Skip to main content

Advertisement

Log in

Assessment of drought trends and variabilities over the agriculture-dominated Marathwada Region, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Drought is considered among the most perilous events with catastrophic consequences, particularly from the agro-economic point of view. These consequences are expected to exacerbate under the increasing meteorological aberrations due to changing climate, which necessitates investigating drought variabilities. This study presents a thorough spatiotemporal assessment of drought trends and variabilities over the agriculture-dominated Marathwada Region, Maharashtra, India. The precipitation data is extracted from the India Meteorological Department (IMD) gridded product, whereas actual evapotranspiration (ET) and Evaporative Stress Index (ESI) are obtained from Global Land Evaporation Amsterdam Model (GLEAM) datasets. Standardized Precipitation Index (SPI) is used to characterize drought occurrences at multiple time frames, whereas non-parametric tests, i.e., modified Mann–Kendall (MMK) and Sen’s slope (SS) tests, are employed to detect trends. The results reveal the region to be prone to droughts, and SPI at a longer time frame (i.e., 12-monthly moving frame) can capture drought occurrences better than the shorter time frames, which can be attributed to the lesser randomness in the time series in the longer frame. A mix of positive/negative trends of SPI series are found for the monsoonal months; however, they are relatively more concentrated towards negative ZMMK. Hence, the Marathwada Region can be inferred to have exhibited a relatively increased tendency towards drought occurrences. The seasonal differences in mean values and trends of rainfall, ET, and ESI are discussed in detail. Since the Marathwada Region has a monsoon-dominated climate with high agricultural importance, the information reported in this study will help in devising water management strategies to minimize the repercussions of droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The gridded rainfall data from IMD is freely available all over India. The ET and PET data are extracted from GLEAMS, which is an open-access global dataset. The detailed information on their sources is provided inside the manuscript.

Code availability

The Python codes are available from the corresponding author upon reasonable request. The Python library ‘IMDLIB’ (https://doi.org/10.5281/zenodo.4405233) can be used to read and download the IMD gridded data. More details on IMDLIB can be found here: https://imdlib.readthedocs.io/en/latest/

References

  • Achugbu, I. C., & Anugwo, S. C. (2016). Drought trend analysis in Kano using Standardized Precipitation Index. FUOYE Journal of Engineering and Technology, 1(1), 105–110.

    Article  Google Scholar 

  • Afzal, M., & Ragab, R. (2020). Assessment of the potential impacts of climate change on the hydrology at catchment scale: Modelling approach including prediction of future drought events using drought indices. Applied Water Science, 10(10), 215.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., & Nawaz, N. (2018). Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmospheric Research, 214, 364–374.

    Article  Google Scholar 

  • Althoff, D., Rodrigues, L. N., & da Silva, D. D. (2021). Assessment of water availability vulnerability in the Cerrado. Applied Water Science, 11(11), 176.

    Article  CAS  Google Scholar 

  • Amirataee, B., & Montaseri, M. (2017). The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran. Natural Hazards, 86(1), 89–106.

    Article  Google Scholar 

  • Amrit, K., Mishra, S. K., Pandey, R. P., Himanshu, S. K., & Singh, S. (2019). Standardized Precipitation Index-based approach to predict environmental flow condition. Ecohydrology, 12(7), e2127.

    Article  Google Scholar 

  • Amrit, K., Pandey, R. P., & Mishra, S. K. (2018a). Assessment of meteorological drought characteristics over Central India. Sustainable Water Resources Management, 4(4), 999–1010.

    Article  Google Scholar 

  • Amrit, K., Pandey, R. P., & Mishra, S. K. (2018b). Characteristics of meteorological droughts in northwestern India. Natural Hazards, 94(2), 561–582.

    Article  Google Scholar 

  • Behera, M. D., & Kushwaha, S. P. (2012). The charms and challenges of climate change biodiversity in a warming world. Biodiversity and Conservation, 21(5), 1153–1158.

    Article  Google Scholar 

  • Chen, S. T., Kuo, C. C., & Yu, P. S. (2009). Historical trends and variability of meteorological droughts in Taiwan/Tendances historiques et variabilité des sécheresses météorologiques à Taiwan. Hydrological Sciences Journal, 54(3), 430–441.

    Article  Google Scholar 

  • Das, P., & Behera, M. D. (2019). Can the forest cover in India withstand large climate alterations? Biodiversity and Conservation, 28(8), 2017–2033.

    Article  Google Scholar 

  • Deshpande, R. S. (2008). Rapporteur’s report on rainfed agriculture: Myriad of issues. Indian Journal of Agricultural Economics, 63(3), 565–576.

    Google Scholar 

  • Gosain, A. K., Rao, S., & Arora, A. (2011). Climate change impact assessment of water resources of India. Current Science, 101(3), 356–371.

    Google Scholar 

  • Gosain, A. K., Rao, S., & Basuray, D. (2006). Climate change impact assessment on hydrology of Indian river basins. Current science, 90(3), 346–353.

    Google Scholar 

  • Guptha, G. C., Swain, S., Al-Ansari, N., Taloor, A. K., & Dayal, D. (2021). Evaluation of an urban drainage system and its resilience using remote sensing and GIS. Remote Sensing Applications: Society and Environment, 23, 100601.

    Article  Google Scholar 

  • Guptha, G. C., Swain, S., Al-Ansari, N., Taloor, A. K., & Dayal, D. (2022). Assessing the role of SuDS in resilience enhancement of urban drainage system: A case study of Gurugram City, India. Urban Climate, 41, 101075.

    Article  Google Scholar 

  • Huang, S., Chang, J., Huang, Q., & Chen, Y. (2014). Spatio-temporal changes and frequency analysis of drought in the Wei River Basin, China. Water Resources Management, 28(10), 3095–3110.

    Article  Google Scholar 

  • Keyantash, J., & Dracup, J. A. (2002). The quantification of drought: An evaluation of drought indices. Bulletin of the American Meteorological Society, 83(8), 1167–1180.

    Article  Google Scholar 

  • Kulkarni, A., Gadgil, S., & Patwardhan, S. (2016). Monsoon variability, the 2015 Marathwada drought and rainfed agriculture. Current Science, 111(7), 1182–1193.

    Article  Google Scholar 

  • Kumar, M. N., Murthy, C. S., Sesha Sai, M. V. R., & Roy, P. S. (2012). Spatiotemporal analysis of meteorological drought variability in the Indian region using Standardized Precipitation Index. Meteorological Applications, 19(2), 256–264.

    Article  Google Scholar 

  • Lester, R., & Gurenko, E. (2003). Financing rapid onset natural disaster losses in India: A risk management approach. The World Bank. Technical Paper.

    Google Scholar 

  • Lotfirad, M., Adib, A., Salehpoor, J., Ashrafzadeh, A., & Kisi, O. (2021). Simulation of the impact of climate change on runoff and drought in an arid and semiarid basin (the Hablehroud, Iran). Applied Water Science, 11(10), 168.

    Article  Google Scholar 

  • Mahajan, D. R., & Dodamani, B. M. (2015). Trend analysis of drought events over upper Krishna basin in Maharashtra. Aquatic Procedia, 4, 1250–1257.

    Article  Google Scholar 

  • Mahanand, S., Behera, M. D., & Roy, P. S. (2022). Rapid assessment of plant diversity using MODIS biophysical proxies. Journal of Environmental Management, 311, 114778.

    Article  Google Scholar 

  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216.

    Article  Google Scholar 

  • Mishra, A. K., & Singh, V. P. (2011). Drought modeling–A review. Journal of Hydrology, 403(1–2), 157–175.

    Article  Google Scholar 

  • Mishra, A. K., Singh, V. P., & Desai, V. R. (2009). Drought characterization: A probabilistic approach. Stochastic Environmental Research and Risk Assessment, 23(1), 41–55.

    Article  Google Scholar 

  • Mishra, A. K., Sivakumar, B., & Singh, V. P. (2015). Drought processes, modeling, and mitigation. Journal of Hydrology, 526, 1–2.

    Article  Google Scholar 

  • Mukherjee, S., Mishra, A., & Trenberth, K. E. (2018). Climate change and drought: A perspective on drought indices. Current Climate Change Reports, 4(2), 145–163.

    Article  Google Scholar 

  • Panda, R. M., Behera, M. D., Roy, P. S., & Ramachandran, R. M. (2019). On the relationships between plant species richness and the environment: A case study in Eastern Ghats, India. Environmental Monitoring and Assessment, 191(3), 784.

    Article  Google Scholar 

  • Pandey, B. K., & Khare, D. (2018). Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India). Global and Planetary Change, 161, 172–182.

    Article  Google Scholar 

  • Patel, P., Thakur, P. K., Aggarwal, S. P., Garg, V., Dhote, P. R., Nikam, B. R., Swain, S., & Al-Ansari, N. (2022). Revisiting 2013 Uttarakhand flash floods through hydrological evaluation of precipitation data sources and morphometric prioritization. Geomatics, Natural Hazards and Risk, 13(1), 646–666.

    Article  Google Scholar 

  • Qutbudin, I., Shiru, M. S., Sharafati, A., Ahmed, K., Al-Ansari, N., Yaseen, Z. M., Shahid, S., & Wang, X. (2019). Seasonal drought pattern changes due to climate variability: Case study in Afghanistan. Water, 11(5), 1096.

    Article  Google Scholar 

  • Rossi, G., Benedini, M., Tsakiris, G., & Giakoumakis, S. (1992). On regional drought estimation and analysis. Water Resources Management, 6(4), 249–277.

    Article  Google Scholar 

  • Roy, P. S., Ramachandran, R. M., Paul, O., Thakur, P. K., Ravan, S., Behera, M. D., Sarangi, C., & Kanawade, V. P. (2022). Anthropogenic land use and land cover changes—A review on its environmental consequences and climate change. Journal of the Indian Society of Remote Sensing, 50, 1615–1640.

    Article  Google Scholar 

  • Sahoo, S., Swain, S., Goswami, A., Sharma, R., & Pateriya, B. (2021). Assessment of trends and multi-decadal changes in groundwater level in parts of the Malwa region, Punjab, India. Groundwater for Sustainable Development, 14, 100644.

    Article  Google Scholar 

  • Shafique, M., & Behera, M. D. (2017). Alarming rise in aridity in the Ganga river basin, India, in past 3.5 decades. Current Science, 112(2), 229–230.

    Google Scholar 

  • Singh, B., Jeganathan, C., Rathore, V. S., Behera, M. D., Singh, C. P., Roy, P. S., & Atkinson, P. M. (2021). Resilience of the central Indian forest ecosystem to rainfall variability in the context of a changing climate. Remote Sensing, 13(21), 4474.

    Article  Google Scholar 

  • Swain, S., Dayal, D., Pandey, A., & Mishra, S. K. (2019). Trend analysis of precipitation and temperature for Bilaspur District, Chhattisgarh, India. World environmental and water resources congress 2019: Groundwater, sustainability, hydro-climate/climate change, and environmental engineering (pp. 193–204). American Society of Civil Engineers.

    Chapter  Google Scholar 

  • Swain, S., Mishra, S. K., & Pandey, A. (2020a). Assessment of meteorological droughts over Hoshangabad district, India. IOP Conference Series: Earth and Environmental Science, 491(1), 012012.

    Google Scholar 

  • Swain, S., Mishra, S. K., & Pandey, A. (2021a). A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada River Basin, India. Environmental Earth Sciences, 80(6), 221. https://doi.org/10.1007/s12665-021-09523-8

    Article  Google Scholar 

  • Swain, S., Mishra, S. K., Pandey, A., & Dayal, D. (2021b). Identification of meteorological extreme years over central division of Odisha using an index-based approach. Hydrological Extremes (pp. 161–174). Cham: Springer. https://doi.org/10.1007/978-3-030-59148-9_12

    Chapter  Google Scholar 

  • Swain, S., Mishra, S. K., Pandey, A., & Dayal, D. (2022a). Spatiotemporal assessment of precipitation variability, seasonality, and extreme characteristics over a Himalayan catchment. Theoretical and Applied Climatology, 147, 817–833. https://doi.org/10.1007/s00704-021-03861-0

    Article  Google Scholar 

  • Swain, S., Mishra, S. K., Pandey, A., & Kalura, P. (2022b). Inclusion of groundwater and socio-economic factors for assessing comprehensive drought vulnerability over Narmada River Basin, India: A geospatial approach. Applied Water Science, 12(2), 14. https://doi.org/10.1007/s13201-021-01529-8

    Article  Google Scholar 

  • Swain, S., Patel, P., & Nandi, S. (2017). Application of SPI, EDI and PNPI using MSWEP precipitation data over Marathwada, India. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5505–5507). IEEE. https://doi.org/10.1109/IGARSS.2017.8128250

    Chapter  Google Scholar 

  • Swain, S., Sahoo, S., Taloor, A. K., Mishra, S. K., & Pandey, A. (2022c). Exploring recent groundwater level changes using Innovative Trend Analysis (ITA) technique over three districts of Jharkhand. Groundwater for Sustainable Development, 18, 100783. https://doi.org/10.1016/j.gsd.2022.100783

  • Swain, S., Sharma, I., Mishra, S. K., Pandey, A., Amrit, K., & Nikam, V. (2020). A framework for managing irrigation water requirements under climatic uncertainties over Beed district, Maharashtra, India. World Environmental and Water Resources Congress 2020: Water Resources Planning and Management and Irrigation and Drainage (pp. 1–8). Reston, VA: ASCE. https://doi.org/10.1061/9780784482957.001

    Chapter  Google Scholar 

  • Swain, S., Taloor, A. K., Dhal, L., Sahoo, S., & Al-Ansari, N. (2022d). Impact of climate change on groundwater hydrology: A comprehensive review and current status of the Indian hydrogeology. Applied Water Science, 12(6), 1–25.

    Article  Google Scholar 

  • Thomas, T., Nayak, P. C., & Ghosh, N. C. (2015). Spatiotemporal analysis of drought characteristics in the Bundelkhand Region of central India using the standardized Precipitation Index. Journal of Hydrologic Engineering, 20(11), 05015004.

    Article  Google Scholar 

  • Tigkas, D., Vangelis, H., & Tsakiris, G. (2012). Drought and climatic change impact on streamflow in small watersheds. Science of the Total Environment, 440, 33–41.

    Article  CAS  Google Scholar 

  • Tiwari, H., & Pandey, B. K. (2019). Non-parametric characterization of long-term rainfall time series. Meteorology and Atmospheric Physics, 131(3), 627–637.

    Article  Google Scholar 

  • Tsakiris, G., & Vangelis, H. (2004). Towards a drought watch system based on spatial SPI. Water Resources Management, 18(1), 1–12.

    Article  Google Scholar 

  • Tsakiris, G., Nalbantis, I., Vangelis, H., Verbeiren, B., Huysmans, M., Tychon, B., Jacquemin, I., Canters, F., Vanderhaegen, S., Engelen, G., Poelmans, L., De Becker, P., & Batelaan, O. (2013). A system-based paradigm of drought analysis for operational management. Water Resources Management, 27(15), 5281–5297.

    Article  Google Scholar 

  • Wilhite, D. A., & Glantz, M. H. (1985). Understanding: The drought phenomenon: The role of definitions. Water International, 10(3), 111–120.

    Article  Google Scholar 

  • Wilhite, D. A., Sivakumar, M. V., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13.

    Article  Google Scholar 

  • Wilhite, D. A., Svoboda, M. D., & Hayes, M. J. (2007). Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resources Management, 21(5), 763–774.

    Article  Google Scholar 

  • Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1–4), 254–271.

    Article  Google Scholar 

  • Zhang, W. (2008). A forecast analysis on world population and urbanization process. Environment, Development and Sustainability, 10(6), 717–730.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sabyasachi Swain: conceptualization, data curation, formal analysis, visualization, writing—original draft. Surendra Kumar Mishra: supervision, review, and editing. Ashish Pandey: supervision, review, and editing. Deen Dayal: data curation, visualization.

Corresponding author

Correspondence to Sabyasachi Swain.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, S., Mishra, S.K., Pandey, A. et al. Assessment of drought trends and variabilities over the agriculture-dominated Marathwada Region, India. Environ Monit Assess 194, 883 (2022). https://doi.org/10.1007/s10661-022-10532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10532-8

Keywords

Navigation