Skip to main content
Log in

Polluting potential from mining wastes: proposal for application a global contamination index

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Indices of contamination (IC) are usually employed to assess the hazardousness associated with potentially toxic elements (PTE) from mining wastes (MW). For such, it is necessary to know the total concentrations of the PTE and local, regional, or global background or reference levels which are tolerable or acceptable threshold values for total content in soils. Although scientific literature is vast regarding the application of IC to MW, there is scarce research on the reference levels that must be employed in locations with no established comparison values. This study proposes basic reference levels for the global application of PTE contents in MW, leading to a global index of contamination (ICG). To this end, it was determined that the PTE to be assessed in MW should be As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, V, and Zn. From the analysis of background and baseline values for soils, reference values for the PTE compiled from worldwide standards or studies on soil and sediment evaluation, and PTE content in MW, a classification is proposed for ICG that considers MW as very low, low, moderate, high, and very high contamination potential. The findings presented herein can be helpful in the comparison of multiple types of MW, representing the contamination hazard by particle emission due to erosion processes that reach the soils or sediments of the surrounding environment. This evaluation can aid in the decision-making process regarding the reutilization of some types of MW that receive a low classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland. New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238. https://doi.org/10.1007/s10661-007-9678-2

    Article  CAS  Google Scholar 

  • Adabanija, M. A., & Oladunjoye, M. A. (2014). Geoenvironmental assessment of abandoned mines and quarries in South-western Nigeria. Journal of Geochemical Exploration, 145, 148–168. https://doi.org/10.1016/J.GEXPLO.2014.06.003

    Article  CAS  Google Scholar 

  • Al-Abed, S. R., Hageman, P. L., Jegadeesan, G., Madhavan, N., & Allen, D. (2006). Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Science of The Total Environment, 364, 14–23. https://doi.org/10.1016/j.scitotenv.2005.10.021

    Article  CAS  Google Scholar 

  • Al-Abed, S. R., Jegadeesan, G., Purandare, J., & Allen, D. (2008). Leaching behavior of mineral processing waste: Comparison of batch and column investigations. Journal of Hazardous Materials, 153(3), 1088–1092. https://doi.org/10.1016/j.jhazmat.2007.09.063

    Article  CAS  Google Scholar 

  • Alberruche del Campo, Arranz-González, J., Rodríguez-Gómez, V., Vadillo, L., Rodríguez, V., & Fernández, F. (2014a). Manual para la evaluación de riesgos de instalaciones de residuos de industrias extractivas cerradas o abandonadas (First.). Ministerio de Agricultura, Alimentación y Medio Ambiente España, Instituto Geológico y Minero de España. http://igmepublicaciones.blogspot.com/2015/05/medio-ambiente-fs.html

  • Alberruche del Campo, E. et al. (2014b). Guía simplificada de evaluación de riesgos de instalaciones de residuos de industrias cerradas o abandonadas. (A. y M. A. de E. Ministerio de Agricultura & I. G. y M. de E. España, Eds.) (1st ed.). Madrid, Spain.

  • ANZECC & ARMCANZ. (2002). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Camberra, Australia: Australian and New Zealand Environment and Conservation Council, and Agriculture and Resource Management Council of Australia and New Zealand.

  • Arranz-González, J., Rodríguez-Gómez, V., Rodríguez-Pacheco, R., Fernández-Naranjo, F. J., Vadillo-Fernández, L., & Alberruche del Campo, E. (2019). Guía para la rehabilitación de instalaciones abandonadas de residuos mineros. Madrid, Spain.: Ministerio para la Transición Ecológica. https://www.miteco.gob.es/en/calidad-y-evaluacion-ambiental/publicaciones/guiarehabilitacioninstalacionesresiduosminerosabandonadas2019_tcm38-496582.pdf

  • Arranz-González, R.-G., & V., Alberruche del Campo, E., Vadillo-Fernández, L., Fernández-Naranjo, F., Reyes-Andrés, J., & Rodríguez-Pacheco, R. (2016). A methodology for ranking potential pollution caused by abandoned mining wastes: Application to sulfide mine tailings in Mazarrón (Southeast Spain). Environmental Earth Sciences, 75(8), 1–10. https://doi.org/10.1007/s12665-016-5495-7

    Article  CAS  Google Scholar 

  • Arranz-González, R.-G., & V., Fernández-Naranjo, F. J., & Vadillo-Fernández, L. (2020). Assessment of the pollution potential of a special case of abandoned sulfide tailings impoundment in Riotinto mining district (SW Spain). Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-11473-w

    Article  Google Scholar 

  • Arranz-González, Vadillo-Fernández, L., Alberruche del Campo, E., Rodríguez-Gómez, V., Fernández-Naranjo, F. J., & Rodríguez-Pacheco, R. (2017). Metodología para clasificar la contaminación potencial causada por residuos mineros abandonados. Aplicación a los residuos mineros del Distrito Linares-La Carolina. In CSCIME (Ed.), XI Congreso Ibérico de Geoquímica (pp. 280–285). Linares, Jaén: Consejo Superior de Colegios de Ingenieros de Minas de España.

  • Ayari, J., Barbieri, M., Agnan, Y., Sellami, A., Braham, A., Dhaha, F., & Charef, A. (2021). Trace element contamination in the mine-affected stream sediments of Oued Rarai in north-western Tunisia: A river basin scale assessment. Environmental Geochemistry and Health, 43(10), 4027–4042. https://doi.org/10.1007/s10653-021-00887-1

    Article  CAS  Google Scholar 

  • Bezerra, A., Araújo, C., Miranda, C., Pereira, S., & Do Rêgo, F. (2016). Background and reference values of metals in soils from Paraíba State, Brazil. Revista Brasileira De Ciencia Do Solo, 40, 1–13. https://doi.org/10.1590/18069657rbcs20150122

    Article  CAS  Google Scholar 

  • Bradford, G., Change, A. C., Page, A. L., Bakhtar, D., Frampton, J. A., & Wright, H. (1996). Background concentrations of trace and major elements in California soils. Riverside, California: Kearney Foundation of Soil Science.

  • Briggs, P. (1996). Forty elements by inductively coupled-plasma atomic emission spectrometry. In B. F. Arbogast (Ed.), Analytical methods manual for the Mineral Resource Surveys Program, U.S. Geological Survey (pp. 77–94). Denver, CO: U. S. Geological Survey. https://pubs.usgs.gov/of/1996/0525/report.pdf

  • Canadian Council of Ministers of the Environment. (2002). Sediment quality guidelines for the protection of aquatic life. Canada: CCME.

  • CCME. (2018). Canadian soil quality guidelines for the protection of environmental and human health. Canadian environmental quality guidelines. Winnipeg, MB.: Canadian Council of Ministers of the Environment.

  • Consejería de Agrícultura, Desarrollo Rural, M. A. y E. (2015). Decreto 49/2015, de 30 de marzo, por el que se regula el régimen jurídico de los suelos contaminados en la Comunidad Autónoma de Extremadura. Actualidad Jurídica Ambiental. Extremadura, España: Diario Oficial de Extremadura.

  • Consejería de Medio Ambiente del Gobierno de Cantabria e Instituto Geológico y Minero de España. (2011). Determinación de Niveles de Fondo y Niveles Genéricos de Referencia para Protección de la Salud Humana de Metales Pesados y Otros Elementos Traza en Suelos de la Comunidad Autónoma de Cantabria. Cantabria. España: Ministerio de Ciencia e Innovación.

  • Danish Environmental Protection Agency. (1997). Soil quality criteria for selected compounds. Denmark: Ministery of Environment and Energy, Denmark.

  • De Caritat, P., Reimann, C., Bastrakov, E., Bowbridge, D., Boyle, P., Briggs, S., et al. (2012). Comparing results from two continental geochemical surveys to world soil composition and deriving predicted empirical global soil (PEGS2) reference values. Earth and Planetary Science Letters, 319–320, 269–276. https://doi.org/10.1016/j.epsl.2011.12.033

    Article  CAS  Google Scholar 

  • De Miguel, E., Callaba, A., Arranz-González, J. C., Cala-Rivero, V., Chacón, E., Gallego, E., et al. (2002). Determinación de niveles de fondo y niveles de referencia de metales pesados y otros elementos traza en suelos de la Comunidad de Madrid. (IGME, Ed.) (First.). Madrid, Spain.: Instituto Geológico y Minero de España.

  • Del Rio-Salas, R., Ayala-Ramírez, Y., Loredo-Portales, R., Romero, F., Molina-Freaner, F., Minjarez-Osorio, C., et al. (2019). Mineralogy and geochemistry of rural road dust and nearby mine tailings: A case of ignored pollution hazard from an abandoned mining site in semi-arid zone. Natural Resources Research, 28(4). https://doi.org/10.1007/s11053-019-09472-x

  • Department of Environmental Affairs. (2014). National norms and standards for the remediation of contaminated land and soil. Pretoria: National Environmental Management.

  • DOUE. (2009). Decisión de la Comisión de 30 de abril de 2009 por la que se completa la definición de residuos inertes en aplicación del artículo 22, apartado 1, letra f), de la Directiva 2006/21/CE del Parlamento Europeo y del Consejo sobre la gestión de los residuos d. Unión Europea: Diario Oficial de la Unión Europea. https://doi.org/10.3000/17252512.L_2009.110.spa

  • Eikmann, T., & Kloke, A. (1991). Nutzungs und schutzbezogene Onentierungswerte fur (Schad)stoffem. In D. Rosenkranz, G. Einsele, & H. Harress (Eds.), Handbuch Bodenschutz (Handbook for Soil Protection) (p. 3590). Erich Schmidt Verlag.

    Google Scholar 

  • Fernández-Caliani, J. C., Barba-Brioso, C., González, I., & Galán, E. (2009). Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water, Air, and Soil Pollution, 200(1–4), 211–226. https://doi.org/10.1007/s11270-008-9905-7

    Article  CAS  Google Scholar 

  • Fernández-Naranjo, F. J., Arranz-González, J. C., Rodríguez-Gómez, V., Rodríguez-Pacheco, R. L., & Vadillo, L. (2020). Geochemical anomalies for the determination of surface stream sediments pollution: Case of Sierra de Cartagena-La Unión mining district, Spain. Environmental Monitoring and Assessment, 192(4). https://doi.org/10.1007/s10661-020-8199-0

  • García-Lorenzo, M. L., Pérez-Sirvent, C., Martínez-Sánchez, M. J., & Molina-Ruiz, J. (2012). Trace elements contamination in an abandoned mining site in a semiarid zone. Journal of Geochemical Exploration, 113, 23–35. https://doi.org/10.1016/j.gexplo.2011.07.001

    Article  CAS  Google Scholar 

  • Gavilán-García, I. C., Ladino, L. A., Franco, E., & Juárez, J. (2020). Determination of factors involved in the assessment of potential risk of atmospheric dispersion and ingestion of mining tailings. Revista Internacional de Contaminacion Ambiental, 36(1), 127–138. https://doi.org/10.20937/RICA.2020.36.53384

  • Generalitat de Catalunya. (2021). Nivells genèrics de referència per a metalls i metal·loides a Catalunya. Catalunya, España.

  • Guzmán-Martínez, F., Arranz-González, J. C., & García-Martínez, M.-J. (2019). Evaluación geoquímico-ambiental de pasivos de minería de uranio en Peña Blanca, México. In P. Nogueira, N. Moreira, J. Roseiro, & M. Maia (Eds.), XII Congresso Ibérico de Geoquímica - XX Semana de Geoquímica (Vol. I, pp. 383–386). Universidade de Évora.

    Google Scholar 

  • Guzmán-Martínez, F., Arranz-González, J. C., García-Martínez, M. J., Ortega, M. F., Rodríguez-Gómez, V., & Jiménez-Oyola, S. (2022). Comparative assessment of leaching tests according to lixiviation and geochemical behavior of potentially toxic elements from abandoned mining wastes. Mine Water and the Environment, 41(1), 265–279. https://doi.org/10.1007/s10230-021-00800-3

    Article  CAS  Google Scholar 

  • Guzmán-Martínez, F., Arranz-González, J. C., Ortega, M. F., García-Martínez, M. J., & Rodríguez-Gómez, V. (2020). A new ranking scale for assessing leaching potential pollution from abandoned mining wastes based on the Mexican official leaching test. Journal of Environmental Management, 273(July), 111139. https://doi.org/10.1016/j.jenvman.2020.111139

    Article  CAS  Google Scholar 

  • Hageman, P. (2004). Use of short-term (5-minute) and long-term (18-hour) leaching tests to characterize, fingerprint, and rank mine-waste material from historical mines in the Deer Creek, Snake River, and Clear Creek watersheds in and around the Montezuma Mining District, Co. U. S. Geological Survey. Denver, Colorado: U.S. Geological Survey. https://pubs.usgs.gov/sir/2004/5104/

  • Hageman, P. L., Seal, R. R., Diehl, S. F., Piatak, N. M., & Lowers, H. A. (2015). Evaluation of selected static methods used to estimate element mobility, acid-generating and acid-neutralizing potentials associated with geologically diverse mining wastes. Applied Geochemistry, 57, 125–139. https://doi.org/10.1016/j.apgeochem.2014.12.007

  • Halamić, J., & Miko, S. (2009). Geochemical Atlas of the Republic of the Republic of Croatia. Zagreb, Croatia: Croatian Geological Survey.

  • Haluschak, P., Eilers, R., Mills, G., & Grift, S. (1998). Status of selected trace elements in agricultural soils of Southern Manitoba. Technical Bulletin. Agriculture and Agri-Food Canada.

    Google Scholar 

  • Hua, C., Zhou, G., Yin, X., Wang, C., Chi, B., Cao, Y., et al. (2018). Assessment of heavy metal in coal gangue: Distribution, leaching characteristic and potential ecological risk. Environmental Science and Pollution Research, 25(32), 32321–32331. https://doi.org/10.1007/s11356-018-3118-4

    Article  CAS  Google Scholar 

  • INSURE. (2017). EQS limit and guideline values for contaminated sites. Sweden.

  • Jarvis, I., & Jarvis, K. E. (1992). Plasma spectrometry in the earth sciences: Techniques, applications and future trends. Chemical Geology, 95(1–2), 1–33. https://doi.org/10.1016/0009-2541(92)90041-3

    Article  CAS  Google Scholar 

  • Jung, M. C. (2001). Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine. Korea. Applied Geochemistry, 16(11–12), 1369–1375. https://doi.org/10.1016/S0883-2927(01)00040-3

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. (C. Press, Ed.) (Fourth.). Boca Raton, FL: CRC Press Taylor & Francis Group. https://doi.org/10.1201/b10158

  • Kim, K. K., Kim, K. W., Kim, J. Y., Kim, I. S., Cheong, Y. W., & Min, J. S. (2001). Characteristics of tailings from the closed metal mines as potential contamination source in South Korea. Environmental Geology, 41(3–4), 358–364. https://doi.org/10.1007/s002540100396

    Article  CAS  Google Scholar 

  • Kloke, A. (1979). Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soils. In United Nations-ECE symposium (pp. 51–53). Geneva.

  • Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., & Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity – A case study from Krakow (Poland). Environmental Pollution, 218, 1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053

    Article  CAS  Google Scholar 

  • Kowalska, J., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  Google Scholar 

  • Lamothe, P. J., Meier, A. L., & Wilson, S. (1999). The determination of forty-four elements in aqueous samples by inductively coupled plasma–mass spectrometry. Denver, CO. https://doi.org/10.3133/ofr99151

  • Lee, C. G., Chon, H.-T., & Jung, M. C. (2001). Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Applied Geochemistry, 16(11–12), 1377–1386. https://doi.org/10.1016/S0883-2927(01)00038-5

    Article  CAS  Google Scholar 

  • Lee, J. S., Chon, H. T., Kim, J. S., Kim, K. W., & Moon, H. S. (1998). Enrichment of potentially toxic elements in areas underlain by black shales and slates in Korea. Environmental Geochemistry and Health, 20(3), 135–147. https://doi.org/10.1023/A:1006571223295

    Article  CAS  Google Scholar 

  • Lottermoser, B. G. (2007). Mine wastes: Characterization, treatment, environmental impacts (Second.). Germany: Springer.

  • Meier, A. L., Grimes, D. J., & Ficklin, W. H. (1994). Inductively coupled plasma–mass spectrometry: A powerful tool for mineral resource and environmental studies. In L. Carter, M. I. Toth, & W. C. Day (Eds.), USGS Research on Mineral Resources (pp. 67–68). Arizona, U.S.A.: U.S. Geological Survey. https://doi.org/10.3133/cir1103A

  • MHRL. (2004). Decree No. V-114, of 8th March 2004, on the Hygiene Standard HN 60:2004: Maximum permissible concentrations of hazardous chemical substances in soil. Decree No. V-114. Lithuania: Minister of Health of the Republic of Lithuania.

  • Ministry of Environment of Poland. (2002). Ordinance of the Ministry of Environment, of 9 September 2002, on Soil Quality Standards of Soil. No. 165, item 1359. Poland: Journal of Laws of the Republic of Poland.

  • Ministry of the Environment Finland. (2007). Government decree on the assessment of soil contamination and remediation needs. Government Decree on the Assessment of Soil Contamination and Remediation Needs. Finland.

  • Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2–3), 183–193. https://doi.org/10.1016/j.gexplo.2007.04.011

    Article  CAS  Google Scholar 

  • Peña-Ortega, M., Del Rio-Salas, R., Valencia-Sauceda, J., Mendívil-Quijada, H., Minjarez-Osorio, C., Molina-Freaner, F., et al. (2019). Environmental assessment and historic erosion calculation of abandoned mine tailings from a semi-arid zone of northwestern Mexico: Insights from geochemistry and unmanned aerial vehicles. Environmental Science and Pollution Research, 26(25), 26203–26215. https://doi.org/10.1007/s11356-019-05849-w

    Article  CAS  Google Scholar 

  • Qi, H., Zhao, B., Li, L., Chen, X., An, J., & Liu, X. (2020). Heavy metal contamination and ecological risk assessment of the agricultural soil in Shanxi Province, China: Heavy metals in soil in Shanxi of China. Royal Society Open Science, 7(10), 10. https://doi.org/10.1098/rsos.200538

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background – Concept and reality. Science of the Total Environment, 350(1–3), 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047

    Article  CAS  Google Scholar 

  • Ross, S., Wood, M., Copplestone, D., Warriner, M., & Crook, P. (2007). UK soil and herbage pollutant survey (Report No.). Almondsbury, Bristol: Environment Agency.

  • Rudnick, R. L., & Gao, S. (2013a). Composition of the continental crust. Treatise on Geochemistry: Second Edition (2nd ed., Vol. 4). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

  • Rudnick, R. L., & Gao, S. (2013b). Composition of the continental crust. Treatise on Geochemistry: Second Edition (2nd ed., Vol. 4). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

  • SERNAGEOMIN. (2021). Datos de geoquímica de dépositos de relaves de Chile. Santiago, Chile: Servicio Nacional de Geología y Minería de Chile. https://www.sernageomin.cl/datos-publicos-deposito-de-relaves/

  • Souissi, R., Souissi, F., Ghorbel, M., Munoz, M., & Courjault-Radé, P. (2015). Mobility of Pb, Zn and Cd in a soil developed on a carbonated bedrock in a semi-arid climate and contaminated by Pb–Zn tailing, Jebel Ressas (NE Tunisia). Environmental Earth Sciences, 73(7), 3501–3512. https://doi.org/10.1007/s12665-014-3634-6

    Article  CAS  Google Scholar 

  • Taylor. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica et Cosmochimica Acta, 28, 1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2

    Article  CAS  Google Scholar 

  • Taylor, M., Cavanagh, J., Curran-Cournane, F., Guinto, D., Gray, C., Drewry, J., et al. (2014). Background concentrations of major and trace elements in New Zealand soils by XRF and acid extraction compared to World literature. Waikato Regional Council. New Zealand.

  • Teper, E. (2009). Dust-particle migration around flotation tailings ponds: Pine needles as passive samplers. Environmental Monitoring and Assessment, 154(1–4), 383–391. https://doi.org/10.1007/s10661-008-0405-4

    Article  CAS  Google Scholar 

  • U.S. EPA. (2007). Method 3051A (SW-846): Microwave assisted acid digestion of sediments, sludges, and oils. Selected analytical methods for environmental remediation and recovery (SAM). Washington, DC, USA. https://www.epa.gov/esam/us-epa-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-and-oils

  • Ure, A. M. (1990). Methods of analysis for heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soils (1st ed., pp. 40–73). Glasgow, United Kingdom: Blackie and Son.

  • VROM. (2000). Circular on target values and intervention values for soil remediation. Reference DBO/1999226863. Netherlands: Ministry of Housing, Spatial Planning and Environment.

  • Walsh, F. N., Gill, R., & Thirlwall, M. F. (1997). Dissolution procedures for geological and environmental samples. In R. Gill (Ed.), Modern analytical geochemistry: An introduction to quantitative chemical analysis techniques for earth, environmental and materials scientists (1st ed., pp. 29–40). London U.K.: Taylor & Francis Group. https://doi.org/10.4324/9781315844381

  • Wu, T. L., Cui, X. D., Cui, P. X., Ata-Ul-Karim, S. T., Sun, Q., Liu, C., et al. (2019). Speciation and location of arsenic and antimony in rice samples around antimony mining area. Environmental Pollution, 252, 1439–1447. https://doi.org/10.1016/j.envpol.2019.06.083

    Article  CAS  Google Scholar 

  • Yamasaki, S., Takeda, A., Nanzyo, M., Taniyama, I., & Nakai, M. (2001). Background levels of trace and ultra-trace elements in soils of Japan. Soil Science and Plant Nutrition, 47(4), 755–765. https://doi.org/10.1080/00380768.2001.10408440

    Article  CAS  Google Scholar 

  • Zarcinas, B., Pongsakul, P., McLaughlin, M., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. 2 Thailand. Environmental Geochemistry and Health, 26, 359–371. https://doi.org/10.1007/s10653-005-4670-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the Spanish Geological Survey (IGME CSIC) and the Mexican Geological Survey (SGM). The authors are especially grateful to four anonymous reviewers for suggesting significant improvements to this manuscript. The authors declare that all data supporting the findings of this study are available within the article [and its supplementary information files].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Guzmán-Martínez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 29 KB)

Supplementary file2 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arranz-González, J.C., Guzmán-Martínez, F., Tapia-Téllez, A. et al. Polluting potential from mining wastes: proposal for application a global contamination index. Environ Monit Assess 194, 792 (2022). https://doi.org/10.1007/s10661-022-10433-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10433-w

Keywords

Navigation