Skip to main content

Advertisement

Log in

Use of geographical information systems (GIS) in assessing ecological profile, fish community structure and production of a large reservoir of Himachal Pradesh

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study demonstrates the spatial analysis and mapping of fish and different measures of environmental parameters and fish diversity of Pong reservoir, Himachal Pradesh, using Kriging spatial interpolation methods for geographical information system mapping. Seasonal data on environmental parameters, potential fish habitat and fish diversity was collected from lentic (dam), lentic (reservoir), transitional and lotic zone of the reservoir.. Important environmental parameters like water temperature, dissolved oxygen, electrical conductivity, water depth and transparency showed variations across the different zones of the reservoir. The sediment of the reservoir was sandy clay loam in nature as per texture analysis. Fish species richness, Shannon index and evenness index showed a similarity of the lotic and lentic (reservoir) zones of the reservoir. Six potential fish breeding grounds were identified in the reservoir indicating high conservation significance. The analysis of data showed a declining trend in fish production from 456.9 tonnes during the decade 1976–1987 to 347.91 tonnes during 2009–2020. The factors like anthropogenic climate change, predation of a stocked fish juvenile by water birds, undersized fish stocking and unscientific management are the probable reasons for the decreasing fish production. The spatial variation pattern of the water spread area, environmental parameters, fish catch and potential fish breeding grounds depicted in the GIS platform can be used as an important information base by the policy makers for fisheries management. The stocking of large size fish as a stocking material and adequate protection of the potential fish breeding grounds are the key advisories for the sustainable enhancement of fisheries as well as conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The experimental data generated or analysed in the present study are available from the corresponding author on request.

References

  • Adhikari, S. (2011). Soil and water quality management in Aquaculture. In T. P. Trivedi TP (Eds), Handbook of fisheries and aquaculture (pp. 239–274). New Delhi: Indian Council of Agricultural Research.

  • APHA. (2012). Standard methods for the examination of waters and waste water. American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Baban, S. M. J. (1999). Use of remote sensing and geographical information system in developing lake management strategies. Hydrobiologia, 395(396), 211–226.

    Article  Google Scholar 

  • Bellido, J. M., et al. (2008). Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. In V. D. Valavanis VD (Eds.) Essential fish habitat mapping in the Mediterranean. Developments in Hydrobiology, Vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9141-4_13

  • Burrough, P. A. (1986). Principles of geographical information system for land resources assessment. Oxford University Press.

    Book  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth.

  • Cowx, I. G. (1994). Stocking strategies. Fisheries Management and Ecology, 1, 15–31.

    Article  Google Scholar 

  • Das, A. K. (2002). Chemical indicators of productivity in small water bodies. In V. V. Sugunan, B. C. Jha, & M. K. Das (Eds.) Culture-based fisheries for inland fisheries development (pp. 38–47). Central Inland Capture Fisheries Research Institute, Barrackpore.

  • Das, A. K., & Shrivastava, N. P. (2003). Ecology of Sarni reservoir (M.P.) in the context of fisheries. Pollution Research, 22, 533–539.

    CAS  Google Scholar 

  • Das, M. K., Sharma, A. P., Sahu, S. K., Srivastava, P. K., & Rej, A. (2013). Impacts and vulnerability of inland fisheries to climate change in the Ganga River system in India. Aquatic Ecosystem Health & Management, 16(4), 415–424.

    Article  Google Scholar 

  • De Mers, M. N. (1997). Fundamentals of geographic information systems. Wiley.

    Google Scholar 

  • De Silva, S. S., Amarasinghe, U. S., Nissanka, C., Wijesooriya, W. A. D. D., & Fernando, M. J. J. (2001). Use of geographical information systems as a tool for predicting fish yield in tropical reservoirs: Case study on Sri Lankan reservoirs. Fisheries Management and Ecology, 8, 47–60.

    Article  Google Scholar 

  • Dindaroğlu. (2014). The use of the GIS Kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover. Journal of Environmental Health Science & Engineering., 12, 130.

    Article  Google Scholar 

  • ESRİ. (2013). The principles of geostatistical analysis. 54. http://maps.unomaha.edu/Peterson/gisII/ESRImanuals/Ch3_Principles.pdf. Accessed 22 February 2014.

  • Gosselink, J. G., & Turner, R. E. (1978). The role of hydrology in fresh water wetland ecosystems. In R. E. Good, D. F. Whigham, & R. L. Simpson (Eds.), Freshwater wetlands: Ecological processes and management potential (pp. 63–78). Academic Press.

    Google Scholar 

  • Hou, W., Sun, S., Wang, M., Li, X., Zhang, N., Xin, X., Sun, L., Li, W., & Jia, R. (2016). Assessing water quality of five typical reservoirs in lower reaches of Yellow River, China: Using a water quality index method. Ecological Indicators, 61(2), 309–316. https://doi.org/10.1016/j.ecolind.2015.09.030

    Article  CAS  Google Scholar 

  • Ibrahim, A. M., & Nasser, R. H. A. (2017). Comparison between inverse distance weighted (IDW) and Kriging. International of Science and Research, 6(11), 249–254.

    Google Scholar 

  • Ingole, N. A., Ram, R. N., Ranjan, R., & Shankhwar, A. K. (2015). Advance application of geospatial technology for fisheries perspective in Tarai region of Himalayan state of Uttarakhand, Sustain. Water Resour Manag, 1, 181–187. https://doi.org/10.1007/s40899-015-0012-9

    Article  Google Scholar 

  • Ingole, N. A., Nain, A. S., Rathod, R. H., Posti, R., & Chalal, R. (2018). GIS based hydro-biological parameter approach for identification of productive zones in Nanak Sagar Reservoir of Uttarakhand, India. Iranian Journal of Fisheries Sciences, 17(2), 427–434. https://doi.org/10.22092/IJFS.2018.115922

    Article  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. Oxford University Press.

    Google Scholar 

  • Jackson, M. L. (1964). Soil Chemical Analysis. Prentice-Hall.

    Google Scholar 

  • Jain, S. K., Singh, P., & Seth, S. M. (2002). Assessment of sedimentation in Bhakra Reservoir in the western Himalayan region using remotely sensed data. Hydrological Sciences Journal, 47(2), 37–41.

    Article  Google Scholar 

  • Karunakaran, D., Sahu, S. K., Pandit, A., & Sharma, A. P. (2019). Assessment of chlorophyll and water quality using remote sensing and GIS imagery in the Cauvery watershed of Karnataka, India. Indian J Fish, 66(2), 43–48.

    Article  Google Scholar 

  • Khadse, G. K., Meshram, D. B., Deshmukh, P., et al. (2019). Water quality of Tehri dam reservoir and contributing rivers in the Himalayan region. India. Sustain. Water Resour Manag, 5, 1951–1961. https://doi.org/10.1007/s40899-019-00348-9

    Article  Google Scholar 

  • Kovalenko, K. E., Thomaz, S. M., & Warfe, D. M. (2011). Habitat complexity: Approaches and future directions. Hydrobiologia, 685, 1–17. https://doi.org/10.1007/s10750-011-0974-z

    Article  Google Scholar 

  • Kumar, A. (1999). Sustainable utilisation of water resource in watershed perspective - A case study in Alaunja watershed, Hazaribagh, Bihar. Journal of the Indian Society of Remote Sensing, 27(1), 13–22. https://doi.org/10.1007/BF02990771

    Article  Google Scholar 

  • Lavery, P., Pattiaratchi, C., Wyllie, A., & Hick, P. (1993). Water quality monitoring in estuarine waters using the landsat thematic mapper. Remote Sensing of Environment, 46, 268–280. https://doi.org/10.1016/0034-4257(93)90047-2

    Article  Google Scholar 

  • Lianthuamluaia, L., Mishal, P., Panda, D., et al. (2019). Understanding spatial and temporal patterns of fish diversity and assemblage structure vis-a-vis environmental parameters in a tropical Indian reservoir. Environmental Science and Pollution Research, 26, 9089–9098.

    Article  CAS  Google Scholar 

  • Lianthuamluaia, L., Sarkar, U. K., Mishal, P., et al. (2021). Assessment of the impact of fish seed stocking on fish yield in small reservoirs of Central India: Towards sustainable management. Environmental Science and Pollution Research, 28, 36464–36471. https://doi.org/10.1007/s11356-021-13095-2

    Article  Google Scholar 

  • Lianthuamluaia., Landge, A. T., Purushothaman, C. S., Deshmukhe, G., Ramteke, K. K. (2013). Assessment of seasonal variations of water quality parameters of Savitri Reservoir, Poladpur, Raigad District, Maharashtra. The Bioscan, 8(4), 1337–1342.

    Google Scholar 

  • Lorenzen, K. (1995). Population dynamics and management of culture-based fisheries. Fisheries Management and Ecology, 2, 61–73.

    Article  Google Scholar 

  • Mahmud, M. S., Masrur, A., Ishtiaque, A., Haider, F., & Habiba, U. (2011). Remote sensing & GIS based spatio-temporal change analysis of wetland in Dhaka City. Bangladesh, Journal of Water Resource and Protection, 3, 781–787. https://doi.org/10.4236/jwarp.2011.311088

    Article  Google Scholar 

  • Mani, P., & Chakravorty, B. (2007). Remote sensing based sedimentation study of Maithon reservoir. J Indian Soc Remote, 35(1), 117–120.

    Article  Google Scholar 

  • Mustapha, M. K. (2008). Assessment of the water quality of Oyun Reservoir, Offa, Nigeria, using selected physico-chemical parameters. Turkish Journal of Fisheries and Aquatic Sciences, 8, 309–319.

    Google Scholar 

  • Oseke, F. I., Anornu, G. K., Adjei, K. A., & Eduvie, M. O. (2021). Assessment of water quality using GIS techniques and water quality index in reservoirs affected by water diversion. Water-Energy Nexus, 4, 25–34.

    Article  CAS  Google Scholar 

  • Pandey, S. (1993). Changes in waterbird diversity due to the construction of Pong Dam reservoir, Himachal Pradesh. India. Biological Conservation, 66(2), 125–130. https://doi.org/10.1016/0006-3207(93)90143-O

    Article  Google Scholar 

  • Pathak, A. K., Sarkar, U. K., & Singh, S. P. (2014). Spatial gradients in freshwater fish diversity, abundance and current pattern in the Himalayan region of Upper Ganges Basin, India., National Bureau of Fish Genetic Resources, Biodiversitas 15(2), 186–194. https://doi.org/10.13057/biodiv/d150210

  • Patra, P. P., Dubey, S. K., Trivedi, R. K., et al. (2017). Estimation of chlorophyll-a concentration and trophic states in Nalban Lake of East Kolkata Wetland, India from Landsat 8 OLI data. Spatial Information Research, 25, 75–87. https://doi.org/10.1007/s41324-016-0069-z

    Article  Google Scholar 

  • Pramanik, A. K., Majumdar, D., & Chatterjee, A. (2020). Factors affecting lean, wet-season water quality of Tilaiya reservoir in Koderma District, India during 2013–2017. Water Science, 34(1), 85–97. https://doi.org/10.1080/11104929.2020.1765451

    Article  Google Scholar 

  • Quevedo-Castro, A., Lopez, J. L., Rangel-Peraza, J. G., Bandala, E., & Bustos-Terrones, Y. (2019). Study of the water quality of a tropical reservoir. Environments, 6(1), 7. https://doi.org/10.3390/environments6010007

    Article  Google Scholar 

  • Rautela, P., Rakshit, R., Jha, V. K., Gupta, R. K., & Munshi, A. (2002). GIS and remote sensing-based study of the reservoir-induced land-use/land-cover changes in the catchment of Tehri dam in Garhwal Himalaya, Uttaranchal (India). Current Science, 83(3), 308–311. http://www.jstor.org/stable/24106890

  • Saha, A., Parakkandi, J., Leela, R. V., Salim, S. M., Panikkar, P., Eregowda, V. M., Sarkar, U. K., & Das, B. K. (2021). Evaluation of spatio-temporal variations in physico-chemical limnology, trophic status and cyanobacterial diversity of an impacted tropical reservoir, India for its sustainable management. International Journal of Environmental Analytical Chemistryhttps://doi.org/10.1080/03067319.2021.1919654

  • Saha, P. K. (2002). Role of soil quality parameters in culture-based fishery management. In: Sugunan VV, Jha BC, Das MK (eds) Culture-based fisheries for inland fisheries development. Central Inland Capture Fisheries Research Institute, Barrackpore, pp 19–22.

  • Sandhya, K. M., Lianthuamluaia, L., Karnatak, G., Sarkar. U. K., Kumari, S., Mishal, P., Kumar, V., Panda, D., Ali, Y., & Naskar, B. K. (2019). Fish assemblage structure and spatial gradients of diversity in a large tropical reservoir, Panchet in the Ganges basin, India. Environmental Science and Pollution Research, 26, 18804–18813. https://doi.org/10.1007/s11356-019-05314-8

  • Sahu, S. K., Bandyopadhyay, J., & Naskar, M. (2018). Spatial characterization of commercial fishing catch rate of Tenualosa ilisha in Hooghly-Matlah estuary of India: A geostatistical appraisal. Indian Journal of Geo Marine Sciences, 47(12), 2524–2531.

    Google Scholar 

  • Sarkar, U. K., & L, Lianthuamluaia., D, Panda., Kumari, S., Parida, P. K., Karnatak, G., Mishal, P. (2020). Evaluation and impact assessment of culture-based fisheries to enhance fish yield in small reservoirs in Odisha State. Fisher Manag Ecol. https://doi.org/10.1111/fme.12429

    Book  Google Scholar 

  • Sarkar, U. K., Karnatak, G., Lianthuamluaia, L., Puthiyottil, M., Ghosh, B. D., Johnson, C., Kumari, S., Saha, S., & Das, B. K. (2022). Combining stakeholders perception and ecological approaches for assessing vulnerability of floodplain wetlands in changing climate: A regional study. International Journal of Biometeorology. https://doi.org/10.1007/s00484-022-02286-2

    Article  Google Scholar 

  • Sarkar, U. K., Pathak, A. K., Kapoor, D., Paul, S. K., & Mahato, L. L. (2004). Use of geographical information systems in developing freshwater aquatic sanctuary management strategies. In P. J. Lailola & C. E. Hollingworth (Eds.), Nishida T (pp. 583–596). GIS/spatial analyses in fishery and aquatic science.

    Google Scholar 

  • Sarkar, U. K., Naskar, M., et al. (2019). Climato-environmental influence on breeding phenology of native catfishes in river Ganga and modeling species response to climatic variability for their conservation. International Journal of Biometeorology, 63, 991–1004. https://doi.org/10.1007/s00484-019-01703-3

  • Sarkar, U. K., Naskar, M., Roy, K., Sudeeshan, D., Srivastava, P., Gupta, S., Bose, A. K., Verma, V. K., Sarkar, S. D., Karnatak, G., & Nandy, S. K. (2017). Benchmarking pre-spawning fitness, climate preferendum of some catfishes from river Ganga and its proposed utility in climate research. Environmental Monitoring and Assessment, 189(10), 491. https://doi.org/10.1007/s10661-017-6201-2

    Article  Google Scholar 

  • Sarkar, U. K., Roy, K., Karnatak, G., & Nandy, S. K. (2018a). Adaptive climate change resilient indigenous fisheries strategies in the floodplain wetlands of West Bengal, India. J Water Clim Change, 9(3), 449–462. https://doi.org/10.2166/wcc.2018.271

    Article  Google Scholar 

  • Sarkar, U. K., Roy, K., Naskar, M., Karnatak, G., Puthiyottil, M., Baksi, S., Kumari, S., Lianthuamluia, L., & Das, B. K. (2021). Assessing vulnerability of freshwater minnows in the Gangetic floodplains of India for conservation and management: Anthropogenic or climatic change risk? Climate Risk Management. https://doi.org/10.1016/j.crm.2021.100325

    Article  Google Scholar 

  • Sarkar, U. K., Sandhya, K. M., Mishal, P., Karnatak, G., & Lianthuamluaia., Kumari, S., Panikkar, P., Palaniswamy, R., Karthikeyan, M., Mol, S. S., Paul, T. T., Ramya, V. L., Rao, D. S. K., Khan, F., Panda, D., Das, B. K. (2018b). Status, prospects, threats, and the way forward for sustainable management and enhancement of the tropical indian reservoir fisheries: An overview. Reviews in Fisheries Science & Aquaculture, 26(2), 155–175. https://doi.org/10.1080/23308249.2017.1373744

    Article  Google Scholar 

  • Sarkar, U. K., Sharma, J., & Mahapatra, B. K. (2015). A review on the fish communities in the Indian Reservoirs and enhancement of fisheries and aquatic environment. Aquaculture Research & Development, 6(1), 1000297. https://doi.org/10.4172/2155-9546.1000297

  • Srivastava, S. K., Sarkar, U. K., & Ponniah, A. G. (2001). Arrangement of habitat information on a GIS platform to identify optimum and degraded areas of golden mahseer (Tor putitora, Hamilton) habitat. In T. Nishida, P. J. Kailola, & C. E. Hollingworth (Eds.), GIS/Spatial Analysis in Fishery and Aquatic Sciences. Fishery- Aquatic GIS Research Group, Saimata, Japan. (Vol. 1., p. 486) (ISBN : 4–87618–023–0-C3945).

  • Sharief, A., Paliwal, S., Sidhu, A. K., & Kubendran, T. (2018). Studies on bird diversity of pong dam wildlife sanctuary, Kangra, Himachal Pradesh, India. Journal of Entomology and Zoology Studies, 6, 904–912.

    Google Scholar 

  • Song, K., Wang, Z., Blackwell, J., Zhang, B., Li, F., Zhang, Y., et al. (2011). Water quality monitoring using Landsat Thematic Mapper data with empirical algorithms in Chagan Lake, China. Journal of Applied Remote Sensing, 5, 053506. https://doi.org/10.1117/1.3559497

    Article  Google Scholar 

  • Sugunan, V. V. (1995). Reservoir fisheries of India. FAO.

    Google Scholar 

  • Sugunan, V. V. (2000). Ecology and fishery management of reservoirs in India. Hydrobiologia, 430(1–3), 121–147. https://doi.org/10.1023/a:1004081316185

    Article  Google Scholar 

  • Sugunan, V. V., Mandal, S. K., & Rao, D. S. K. (2002). Fish yield prediction through morpho-edaphic index and estimation of stocking density for Indian reservoirs. Indian J Fish, 49(4), 369–378.

    Google Scholar 

  • Vass, K. K., Das, M. K., Srivastava, P. K., & Dey, S. (2009). Assessing the impact of climate change on inland fisheries in River Ganga and its plains in India. Aquatic Ecosystem Health & Management, 12(2), 138–151. https://doi.org/10.1080/14634980902908746

    Article  Google Scholar 

  • Welcomme, R. L. (1997). Evaluation of stocking and introduction as management tools. In I. G. Cowx (Ed.), Stocking and introduction of fish. Blackwell Science, Oxford.

Download references

Acknowledgements

The authors acknowledge the director, ICAR-CIFRI, for providing the facility to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed by BKD. Field data were collected and analysed by HC, TK, UKS, AKD, BKS, LL, SC, KM, SM. GIS Data were analysed by HC and TK. Data were interpreted by BKD, AKS, UKS. The manuscript is prepared and edited by all the authors.

Corresponding author

Correspondence to B. K. Das.

Ethics declarations

Ethics approval and consent to participate

The experiment conducted in the present study has been passed through the institute’s ethical committee and the committee approved to carry out of experiment sampling of fish and its handling was performed as per the instruction laid by the ethical committee.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, H., Kayal, T., Lianthuamluaia, L. et al. Use of geographical information systems (GIS) in assessing ecological profile, fish community structure and production of a large reservoir of Himachal Pradesh. Environ Monit Assess 194, 643 (2022). https://doi.org/10.1007/s10661-022-10292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10292-5

Keywords

Navigation