Skip to main content

Advertisement

Log in

Time series forecasting of temperature and turbidity due to global warming in river Ganga at and around Varanasi, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The fluctuation in the river ecosystem network due to climate change-induced global warming affects aquatic organisms, water quality, and other ecological processes. Assessment of climate change-induced global warming impacts on regional hydrological processes is vital for effective water resource management and planning. The global warming effect on river water quality has been analyzed in this work. The river Ganga stretch near the Varanasi region has been chosen as the study area for this analysis. The air temperature has been predicted using the seasonal autoregressive integrated moving average (SARIMA) and the Prophet model. The Prophet model has shown better accuracy with a root mean square percent error (RMSPE) value of 3.2% compared to the SARIMA model, which has an RMPSE value of 7.54%. The river temperature, turbidity, and nighttime radiance values have been predicted for the years 2022 and 2025 using the long short-term memory (LSTM) algorithm. The anthropogenic effect on the river has been evaluated by using the nighttime radiance imageries. The predicted average river temperature shows an increment of 0.58 °C and 0.63 °C for the city and non-city river stretches, respectively, in 2025 compared to 2022. Similarly, the river turbidity shows an increment of 1.21 nephelometric turbidity units (NTU) and 1.17 NTU for the city and non-city stretch, respectively, in 2025 compared to 2022. For future predicted years, the nighttime radiance values for the region situated near the city river stretch show a significant rise compared to the region that lies nearby the non-city river stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and materials

The datasets that support the findings of this study are openly available in Google Earth Engine at https://earthengine.google.com (accessed on July 20 21, 22, and 30 2021).

Code availability

Not applicable.

References

  • Alcamo, J., Flörke, M., & Märker, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247–275.

    Article  Google Scholar 

  • Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016.

  • Barzegar, R., Aalami, M. T., & Adamowski, J. (2020). Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model. Stochastic Environmental Research and Risk Assessment, 1–19.

  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365–377.

    Article  Google Scholar 

  • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

    Article  CAS  Google Scholar 

  • Bharati, L., Lacombe, G., Gurung, P., Jayakody, P., Hoanh, C. T., & Smakhtin, V. (2011). The impacts of water infrastructure and climate change on the hydrology of the Upper Ganges River Basin (Vol. 142). IWMI.

  • Bocaniov, S. A., Leon, L. F., Rao, Y. R., Schwab, D. J., & Scavia, D. (2016). Simulating the effect of nutrient reduction on hypoxia in a large lake (Lake Erie, USA-Canada) with a three-dimensional lake model. Journal of Great Lakes Research, 42(6), 1228–1240.

    Article  CAS  Google Scholar 

  • Boon, P., & Raven, P. (Eds.). (2012). River conservation and management. John Wiley & Sons.

  • Borowik, G., Wawrzyniak, Z. M., & Cichosz, P. (2018, December). Time series analysis for crime forecasting. In 2018 26th International Conference on Systems Engineering (ICSEng) (pp. 1–10). IEEE.

  • Budd, J. W., Beeton, A. M., Stumpf, R. P., Culver, D. A., & Charles Kerfoot, W. (2001). Satellite observations of Microcystis blooms in western Lake Erie. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Verhandlungen, 27(7), 3787–3793.

    Google Scholar 

  • Caissie, D. (2006). The thermal regime of rivers: A review. Freshwater Biology, 51(8), 1389–1406.

    Article  Google Scholar 

  • Chakrapani, G. J., & Saini, R. K. (2009). Temporal and spatial variations in water discharge and sediment load in the Alaknanda and Bhagirathi Rivers in Himalaya, India. Journal of Asian Earth Sciences, 35(6), 545–553.

    Article  Google Scholar 

  • Chikkakrishna, N. K., Hardik, C., Deepika, K., & Sparsha, N. (2019, December). Short-term traffic prediction using sarima and FbPROPHET. In 2019 IEEE 16th India Council International Conference (INDICON) (pp. 1–4). IEEE.

  • Das, N., Bhattacharjee, R., Choubey, A., Ohri, A., Dwivedi, S. B., & Gaur, S. (2021). Time series analysis of automated surface water extraction and thermal pattern variation over the Betwa river, India. Advances in Space Research, 68(4), 1761–1788.

    Article  Google Scholar 

  • Das, N., Ohri, A., Agnihotri, A. K., Omar, P. J., & Mishra, S. (2020). Wetland dynamics using geo-spatial technology. In Advances in water resources engineering and management (pp. 237–244). Springer, Singapore. https://doi.org/10.1007/978-981-13-8181-2_18

  • Das, P., & Tamminga, K. R. (2012). The Ganges and the GAP: An assessment of efforts to clean a sacred river. Sustainability, 4(8), 1647–1668.

    Article  Google Scholar 

  • Daufresne, M., & Boёt, P. (2007). Climate change impacts on structure and diversity of fish communities in rivers. Global Change Biology, 13(12), 2467–2478.

    Article  Google Scholar 

  • Delpla, I., Jung, A. V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225–1233.

    Article  CAS  Google Scholar 

  • Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 341(6145), 486–492.

    Article  CAS  Google Scholar 

  • Duncan, A. E., de Vries, N., & Nyarko, K. B. (2018). Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries. Water, Air, & Soil Pollution, 229(8), 1–10.

    Article  CAS  Google Scholar 

  • Durance, I., & Ormerod, S. J. (2009). Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshwater Biology, 54(2), 388–405.

    Article  CAS  Google Scholar 

  • Dyurgerov, M. B., & Meier, M. F. (2000). Twentieth century climate change: Evidence from small glaciers. Proceedings of the National Academy of Sciences, 97(4), 1406–1411.

    Article  CAS  Google Scholar 

  • Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289(5487), 2068–2074.

    Article  CAS  Google Scholar 

  • Eaton, J. G., & Scheller, R. M. (1996). Effects of climate warming on fish thermal habitat in streams of the United States. Limnology and Oceanography, 41(5), 1109–1115.

    Article  Google Scholar 

  • Eaton, J. G., McCormick, J. H., Goodno, B. E., O’brien, D. G., Stefany, H. G., Hondzo, M., & Scheller, R. M. (1995). A field information-based system for estimating fish temperature tolerances. Fisheries, 20(4), 10–18.

    Article  Google Scholar 

  • Elsworth, S., & Güttel, S. (2020). Time series forecasting using LSTM networks: A symbolic approach. arXiv preprint arXiv:2003.05672

  • Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C., & Ghosh, T. (2017). VIIRS night-time lights. International Journal of Remote Sensing, 38(21), 5860–5879.

    Article  Google Scholar 

  • Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G., & Meybeck, M. (2006). Effective sea-level rise and deltas: Causes of change and human dimension implications. Global and Planetary Change, 50(1–2), 63–82.

    Article  Google Scholar 

  • Essou, G. R., Brissette, F., & Lucas-Picher, P. (2017). The use of reanalyses and gridded observations as weather input data for a hydrological model: Comparison of performances of simulated river flows based on the density of weather stations. Journal of Hydrometeorology, 18(2), 497–513.

    Article  Google Scholar 

  • Farrell, A. P. (2009). Environment, antecedents and climate change: Lessons from the study of temperature physiology and river migration of salmonids. Journal of Experimental Biology, 212(23), 3771–3780.

    Article  CAS  Google Scholar 

  • Garg, V., Aggarwal, S. P., & Chauhan, P. (2020). Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomatics, Natural Hazards and Risk, 11(1), 1175–1195.

    Article  Google Scholar 

  • Georgiyevsky, V. Y. (1996). Evaluation of possible climate change impact on hydrological regime and water resources of the former USSR rivers. Russian Meteorology and Hydrology, 11, 89–99.

    Google Scholar 

  • Ghosh, S., & Mistri, B. (2015). Geographic concerns on flood climate and flood hydrology in monsoon-dominated Damodar river basin, Eastern India. Geography Journal, 2015.

  • Gouin, T., Armitage, J. M., Cousins, I. T., Muir, D. C., Ng, C. A., Reid, L., & Tao, S. (2013). Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. Environmental Toxicology and Chemistry, 32(1), 20–31.

    Article  CAS  Google Scholar 

  • Green, T. R. (2016). Linking climate change and groundwater. In Integrated groundwater management (pp. 97–141). Springer, Cham. https://doi.org/10.1007/978-3-319-23576-9_5

  • Gregory, J. M., Huybrechts, P., & Raper, S. C. (2004). Threatened loss of the Greenland ice-sheet. Nature, 428(6983), 616–616.

    Article  CAS  Google Scholar 

  • Hadzima-Nyarko, M., Rabi, A., & Šperac, M. (2014). Implementation of artificial neural networks in modeling the water-air temperature relationship of the river Drava. Water Resources Management, 28(5), 1379–1394.

    Article  Google Scholar 

  • Jain, C. K., & Singh, S. (2020). Impact of climate change on the hydrological dynamics of River Ganga, India. Journal of Water and Climate Change, 11(1), 274–290.

    Article  Google Scholar 

  • Järvenpää, M., & Lindström, K. (2004). Water turbidity by algal blooms causes mating system breakdown in a shallow-water fish, the sand goby Pomatoschistus minutus. Proceedings of the Royal Society of London. Series b: Biological Sciences, 271(1555), 2361–2365.

    Article  Google Scholar 

  • Jiang, T., Chen, Y. D., Xu, C. Y., Chen, X., Chen, X., & Singh, V. P. (2007). Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. Journal of Hydrology, 336(3–4), 316–333.

    Article  Google Scholar 

  • Kefford, B. J. (1998). The relationship between electrical conductivity and selected macroinvertebrate communities in four river systems of south-west Victoria, Australia. International Journal of Salt Lake Research, 7(2), 153–170. https://doi.org/10.1023/A:1009019404720

    Article  Google Scholar 

  • Kelkar, N., Arthur, R., Dey, S., & Krishnaswamy, J. (2022). Flood-pulse variability and climate change effects increase uncertainty in fish yields: Revisiting narratives of declining fish catches in India’s Ganga River. Hydrology, 9(4), 53.

    Article  Google Scholar 

  • Kidmose, J., Refsgaard, J. C., Troldborg, L., Seaby, L. P., & Escrivà, M. M. (2012). Climate change impact on groundwater levels: Ensemble modelling of extreme values. Hydrology & Earth System Sciences Discussions, 9(6).

  • Kishore, P., Jyothi, S., Basha, G., Rao, S. V. B., Rajeevan, M., Velicogna, I., & Sutterley, T. C. (2016). Precipitation climatology over India: Validation with observations and reanalysis datasets and spatial trends. Climate Dynamics, 46(1–2), 541–556.

    Article  Google Scholar 

  • Kong, Y. L., Huang, Q., Wang, C., Chen, J., Chen, J., & He, D. (2018). Long short-term memory neural networks for online disturbance detection in satellite image time series. Remote Sensing, 10(3), 452.

    Article  Google Scholar 

  • Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H. O., Kampel, M., & Butman, D. (2019). Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sensing of Environment, 224, 104–118.

    Article  Google Scholar 

  • Kulkarni, G. E., Muley, A. A., Deshmukh, N. K., & Bhalchandra, P. U. (2018). Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Maharashtra. India. Modeling Earth Systems and Environment, 4(4), 1435–1444.

    Article  Google Scholar 

  • Kumar, C. P. (2012). Climate change and its impact on groundwater resources. International Journal of Engineering and Science, 1(5), 43–60.

    Google Scholar 

  • Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A., & Lafaye, M. (2007). Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 106(1), 66–74.

    Article  Google Scholar 

  • Landis, W. G., Durda, J. L., Brooks, M. L., Chapman, P. M., Menzie, C. A., Stahl, R. G., Jr., & Stauber, J. L. (2013). Ecological risk assessment in the context of global climate change. Environmental Toxicology and Chemistry, 32(1), 79–92.

    Article  CAS  Google Scholar 

  • Learmonth, J. A., MacLeod, C. D., Santos, M. B., Pierce, G. J., Crick, H. Q. P., & Robinson, R. A. (2006). Potential effects of climate change on marine mammals. Oceanography and Marine Biology, 44, 431.

    Google Scholar 

  • Lee, M. H., Rahman, N. H., Latif, M. T., Nor, M. E., & Kamisan, N. A. (2012). Seasonal ARIMA for forecasting air pollution index: A case study. American Journal of Applied Sciences, 9(4), 570.

    Article  Google Scholar 

  • Ling, F., Foody, G. M., Du, H., Ban, X., Li, X., Zhang, Y., & Du, Y. (2017). Monitoring thermal pollution in rivers downstream of dams with Landsat ETM+ thermal infrared images. Remote Sensing, 9(11), 1175.

    Article  Google Scholar 

  • Lyon-Caen, H., & Molnar, P. (1985). Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalaya and Ganga Basin. Tectonics, 4(6), 513–538.

    Article  Google Scholar 

  • Majumder, M. S. I., Hasan, I., Mandal, S., Islam, M. K., Rahman, M. M., Hawlader, N. H., & Sultana, I. (2017). Climate change induced multi hazards disaster risk assessment in Southern coastal belt of Bangladesh. American Journal of Environmental Engineering and Science, 4(1), 1–7.

    Google Scholar 

  • Mall, R. K., Singh, R., Gupta, A., Srinivasan, G., & Rathore, L. S. (2006). Impact of climate change on Indian agriculture: A review. Climatic Change, 78(2), 445–478.

    Article  Google Scholar 

  • Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk, J. C., Lang, H., & Wilke, K. (2001). Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Climatic Change, 49(1), 105–128.

    Article  CAS  Google Scholar 

  • Miller, J. R., Sinclair, J. T., & Walsh, D. (2015). Controls on suspended sediment concentrations and turbidity within a reforested, Southern Appalachian Headwater Basin. Water, 7(6), 3123–3148.

    Article  Google Scholar 

  • Mishra, V. N., Rai, P. K., Prasad, R., Punia, M., & Nistor, M. M. (2018). Prediction of spatio-temporal land use/land cover dynamics in rapidly developing Varanasi district of Uttar Pradesh, India, using geospatial approach: A comparison of hybrid models. Applied Geomatics, 10(3), 257–276.

    Article  Google Scholar 

  • Moors, E. J., Groot, A., Biemans, H., van Scheltinga, C. T., Siderius, C., Stoffel, M., & Collins, D. N. (2011). Adaptation to changing water resources in the Ganges basin, northern India. Environmental Science & Policy, 14(7), 758–769.

    Article  Google Scholar 

  • Naithani, A. K., Nainwal, H. C., Sati, K. K., & Prasad, C. (2001). Geomorphological evidences of retreat of the Gangotri glacier and its characteristics. Current Science, 87–94. https://www.jstor.org/stable/24105561. Accessed 2 August 2021.

  • Nasrabadi, T., Ruegner, H., Sirdari, Z. Z., Schwientek, M., & Grathwohl, P. (2016). Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water. Applied Geochemistry, 68, 1–9.

    Article  CAS  Google Scholar 

  • O’neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334.

    Article  CAS  Google Scholar 

  • Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 5(3), 317–335.

    CAS  Google Scholar 

  • Pahlevan, N., Chittimalli, S. K., Balasubramanian, S. V., & Vellucci, V. (2019). Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sensing of Environment, 220, 19–29.

    Article  Google Scholar 

  • Pandey, J., & Singh, R. (2017). Heavy metals in sediments of Ganga River: Up- and downstream urban influences. Applied Water Science, 7(4), 1669–1678.

    Article  CAS  Google Scholar 

  • Pletterbauer, F., Melcher, A., & Graf, W. (2018). Climate change impacts in riverine ecosystems. Riverine Ecosystem Management. Aquatic Ecology Series, 8, 203–223.

    Article  Google Scholar 

  • Quang, N. H., Sasaki, J., Higa, H., & Huan, N. H. (2017). Spatiotemporal variation of turbidity based on Landsat 8 OLI in Cam Ranh Bay and Thuy Trieu Lagoon, Vietnam. Water, 9(8), 570.

    Article  CAS  Google Scholar 

  • Rabalais, N. N., Turner, R. E., Díaz, R. J., & Justić, D. (2009). Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66(7), 1528–1537.

    Article  Google Scholar 

  • Rai, B. (2013). Pollution and conservation of Ganga river in modern India. International Journal of Scientific and Research Publications, 3(4), 1–4.

    Google Scholar 

  • Rai, P. K., Mishra, A., & Tripathi, B. D. (2010). Heavy metal and microbial pollution of the River Ganga: A case study of water quality at Varanasi. Aquatic Ecosystem Health & Management, 13(4), 352–361.

    Article  CAS  Google Scholar 

  • Ramachandran, A., Khan, A. S., Palanivelu, K., Prasannavenkatesh, R., & Jayanthi, N. (2017). Projection of climate change-induced sea-level rise for the coasts of Tamil Nadu and Puducherry, India using SimCLIM: A first step towards planning adaptation policies. Journal of Coastal Conservation, 21(6), 731–742.

    Article  Google Scholar 

  • Rao, K. L. (1975). India’s water wealth (p. 255). Orient Longman Ltd.

    Google Scholar 

  • Rehana, S., & Mujumdar, P. P. (2011). River water quality response under hypothetical climate change scenarios in Tunga-Bhadra River, India. Hydrological Processes, 25(22), 3373–3386.

    Article  Google Scholar 

  • Roy, P. S., Behera, M. D., & Srivastav, S. K. (2017). Satellite remote sensing: Sensors, applications and techniques.

  • Sakyi, P. A., & Asare, R. (2012). Impact of temperature on bacterial growth and survival in drinking-water pipes. Research Journal of Environmental and Earth Sciences, 4(8), 807–817.

    CAS  Google Scholar 

  • Samal, K. K. R., Babu, K. S., Das, S. K., & Acharaya, A. (2019, August). Time series based air pollution forecasting using SARIMA and Prophet model. In Proceedings of the 2019 International Conference on Information Technology and Computer Communications (pp. 80–85).

  • Sebastiá-Frasquet, M. T., Aguilar-Maldonado, J. A., Santamaría-Del-Ángel, E., & Estornell, J. (2019). Sentinel 2 analysis of turbidity patterns in a coastal lagoon. Remote Sensing, 11(24), 2926.

    Article  Google Scholar 

  • Shrestha, A. B., Bajracharya, S. R., Sharma, A. R., Duo, C., & Kulkarni, A. (2017). Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975–2010. International Journal of Climatology, 37(2), 1066–1083.

    Article  Google Scholar 

  • Singh, U. K., & Kumar, B. (2018). Climate change impacts on hydrology and water resources of Indian river basins. Current World Environment, 13(1), 32.

    Article  Google Scholar 

  • Srivastava, K., Misra, S., Verma, H., Thakur, V. R., Jha, D. N., & Das, B. K. (2020). Microflora and fauna of the river Ganga in pristine conditions of Harsil, India. Flora and Fauna, 26(2), 271–278.

    Article  Google Scholar 

  • Subramanian, V. (1996). The sediment load of Indian rivers-An update. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 236, 183–190.

    Google Scholar 

  • Subramanian, V., & Ramanathan, A. L. (1996). Nature of sediment load in the Ganges-Brahmaputra River systems in India. In Sea-level rise and coastal subsidence (pp. 151–168). Springer, Dordrecht.

  • Tare, V., Yadav, A. V. S., & Bose, P. (2003). Analysis of photosynthetic activity in the most polluted stretch of river Ganga. Water Research, 37(1), 67–77.

    Article  CAS  Google Scholar 

  • Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 24(5), 2527–2544.

    Article  Google Scholar 

  • Taylor, S. (2019). Prophet: Automatic forecasting procedure. https://cran.rproject.org/web/packages/prophet/. Accessed 23 July 2021.

  • Todd, A. S., Manning, A. H., Verplanck, P. L., Crouch, C., McKnight, D. M., & Dunham, R. (2012). Climate-change-driven deterioration of water quality in a mineralized watershed. Environmental Science & Technology, 46(17), 9324–9332.

    Article  CAS  Google Scholar 

  • Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46–56.

    Article  Google Scholar 

  • Vishwakarma, A., Singh, A., Mahadik, A., & Pradhan, R. (2020). Stock price prediction using Sarima and Prophet machine learning model. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), 9(1). XX.082020/IJARSCT.

  • Wade, A. J., Whitehead, P. G., Hornberger, G. M., & Snook, D. L. (2002). On modelling the flow controls on macrophyte and epiphyte dynamics in a lowland permeable catchment: The River Kennet, southern England. Science of the Total Environment, 282, 375–393.

    Article  Google Scholar 

  • Wang, W., & Guo, Y. (2009, October). Air pollution PM2. 5 data analysis in Los Angeles long beach with seasonal ARIMA model. In 2009 International Conference on Energy and Environment Technology (Vol. 3, pp. 7–10). IEEE.

  • Watts, G., Battarbee, R. W., Bloomfield, J. P., Crossman, J., Daccache, A., Durance, I., & Wilby, R. L. (2015). Climate change and water in the UK–past changes and future prospects. Progress in Physical Geography, 39(1), 6–28.

    Article  Google Scholar 

  • Wawrzyniak, V., Piégay, H., & Poirel, A. (2011). Longitudinal and temporal thermal patterns of the French Rhône River using LANDSAT ETM+ thermal infrared images. Aquatic Sciences, 74, 405–414. https://doi.org/10.1007/s00027-011-0235-2

    Article  Google Scholar 

  • Whitehead, P. G., Barbour, E., Futter, M. N., Sarkar, S., Rodda, H., Caesar, J., & Salehin, M. (2015). Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: Low flow and flood statistics. Environmental Science: Processes & Impacts, 17(6), 1057–1069.

    CAS  Google Scholar 

  • Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., & Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101–123.

    Article  Google Scholar 

  • Xiao, C., Chen, N., Hu, C., Wang, K., Gong, J., & Chen, Z. (2019). Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sensing of Environment, 233, 111358.

    Article  Google Scholar 

  • Xin, Z., & Kinouchi, T. (2013). Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences. Journal of Hydrology, 489, 16–25.

    Article  Google Scholar 

  • Yen, T. P., & Rohasliney, H. (2013). Status of water quality subject to sand mining in the Kelantan River, Kelantan. Tropical Life Sciences Research, 24(1), 19.

    Google Scholar 

  • Yigit Avdan, Z., Kaplan, G., Goncu, S., & Avdan, U. (2019). Monitoring the water quality of small water bodies using high-resolution remote sensing data. ISPRS International Journal of Geo-Information, 8(12), 553.

    Article  Google Scholar 

  • Yussof, F. N., Maan, N., & Md Reba, M. N. (2021). LSTM networks to improve the prediction of harmful algal blooms in the West Coast of Sabah. International Journal of Environmental Research and Public Health, 18(14), 7650.

    Article  CAS  Google Scholar 

  • Zakwan, M., Ahmad, Z., & Sharief, S. M. V. (2018). Magnitude-frequency analysis for suspended sediment transport in the Ganga River. Journal of Hydrologic Engineering, 23(7), 05018013.

    Article  Google Scholar 

  • Zanchett, G., & Oliveira-Filho, E. C. (2013). Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 5(10), 1896–1917.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to take this opportunity to express their gratefulness towards Dr. Prabhat Kumar Singh Dixit, HOD of Civil Engineering Department, IIT (BHU), for constantly motivating to carry forward this study. Additionally, a special vote of thanks to Dr. Prithvish Nag (former Surveyor General of India) for reviewing and adding positive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Bhattacharjee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Sagar, A., Bhattacharjee, R. et al. Time series forecasting of temperature and turbidity due to global warming in river Ganga at and around Varanasi, India. Environ Monit Assess 194, 617 (2022). https://doi.org/10.1007/s10661-022-10274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10274-7

Keywords

Navigation