Skip to main content

Advertisement

Log in

Hydrogeochemical characterization and quality assessment of groundwater resource in Savar — an industrialized zone of Bangladesh

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Savar Upazila in the Dhaka District is a rapidly expanding city with a diverse range of industries and agricultural activities. This expansion poses environmental challenges including the threat to groundwater contamination. Based on these considerations, the objective of this research is to carry out a shallow groundwater hydrogeochemical characterization and an assessment of the suitablity of the groundwater for drinking and irrigational purposes using a geochemical approach, multivariate statistical techniques, and some indices of groundwater quality. The hydrogeochemical analyses of 42 groundwater samples from shallow depths (18 − 76 m) showed that the order of concentrations of cations, anions, and metals was Ca2+ > Na+ > Mg2+ > K+, HCO3 > Cl > SO42− > NO3, and Cr > As > Pb > Mn > Fe, respectively. Weathering of silicates was found to be the most significant hydrogeochemical process governing the chemistry of groundwater. Cation exchange also plays a significant role in the evolution of the groundwater chemistry. Principal component analysis and hierarchical cluster analysis suggested that anthropogenic activities are influencing groundwater quality. A drinking water quality index map showed that about 91% of the groundwater samples were in the excellent category and suitable for human consumption, with only a few samples exceeding the standards of the WHO and Bangladesh for concentrations of Ca2+, Mg2+, HCO3, Fe, Mn, and As. An analysis of irrigation quality parameters found that most of the groundwater samples were either excellent or good for agricultural uses, except for one sample in the Tetuljhora Union that was unsuitable based on residual sodium carbonate. This finding may be useful to local governments in understanding the current status of groundwater quality, tracking potential threats of contamination, and initiating appropriate measures for long-term groundwater resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad, A. Y., Al-Ghouti, M. A., Khraisheh, M., & Zouari, N. (2020). Hydrogeochemical characterization and quality evaluation of groundwater suitability for domestic and agricultural uses in the state of Qatar. Groundwater for Sustainable Development, 11, 100467. https://doi.org/10.1016/j.gsd.2020.100467

    Article  Google Scholar 

  • Ahmed, F., Fakhruddin, A. N. M., Imam, M. D., Khan, N., Abdullah, A. T. M., Khan, T. A., Rahman, M., & Uddin, M. N. (2017). Assessment of roadside surface water quality of Savar, Dhaka, Bangladesh using GIS and multivariate statistical techniques. Applied Water Science, 7(7), 3511–3525. https://doi.org/10.1007/s13201-017-0619-0

    Article  CAS  Google Scholar 

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., Imam, M. B., Khan, A. A., & Sracek, O. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19(2), 181–200. https://doi.org/10.1016/j.apgeochem.2003.09.006

    Article  CAS  Google Scholar 

  • Ahmed, N., Hoque, M. A. -A., Pradhan, B., & Arabameri, A. (2021). Spatio-temporal assessment of groundwater potential zone in the drought-prone area of Bangladesh using GIS-based bivariate models. Natural Resources Research, 30(5), 3315–3337. https://doi.org/10.1007/s11053-021-09870-0

    Article  Google Scholar 

  • Ahmed, N., Bodrud-Doza, M., Islam, S. M. D. -U., Choudhry, M. A., Muhib, M. I., Zahid, A., Hossain, S., Moniruzzaman, M., Deb, N., & Bhuiyan, M. A. Q. (2019). Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Bangladesh. Acta Geochimica, 38(3), 440–455. https://doi.org/10.1007/s11631-018-0303-6

    Article  CAS  Google Scholar 

  • Al-Shidi, F. K. R. (2014). Study the Quality of Groundwater of Al-Zoroup Area in Mahdah State, the Sultanate of Oman. https://scholarworks.uaeu.ac.ae/all_theses/12

  • Anny, F., Kabir, M., & Bodrud-Doza, M. (2017). Assessment of surface water pollution in urban and industrial areas of Savar Upazila. Bangladesh. Pollution, 3(2), 243–259.

    CAS  Google Scholar 

  • Anonna, T. A., Ahmed, Z., Alam, R., Karim, M., Xie, Z., Kumar, P., Zhang, F., & Simal-Gandara, J. (2022). Water quality assessment for drinking and irrigation purposes in Mahananda River Basin of Bangladesh. Earth Systems and Environment, 6(1), 87–98. https://doi.org/10.1007/s41748-021-00274-x

    Article  Google Scholar 

  • APHA. (2012). Standard methods for the examination of water and wastewater. Washington: American Public Health Association (22nd ed). Retrived Feburary 3, 2021. From: http://www.standardmethods.org/

  • Asadi, E., Isazadeh, M., Samadianfard, S., Ramli, M. F., Mosavi, A., Nabipour, N., Shamshirband, S., Hajnal, E., & Chau, K. -W. (2020). Groundwater quality assessment for sustainable drinking and irrigation. Sustainability, 12(1), 177. https://doi.org/10.3390/su12010177

    Article  CAS  Google Scholar 

  • Avvannavar, S. M., & Shrihari, S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore. South India. Environmental Monitoring and Assessment, 143(1), 279–290. https://doi.org/10.1007/s10661-007-9977-7

    Article  CAS  Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29). Food and Agriculture Organization of the United Nations Rome.

  • Bahar, M. M., & Reza, M. S. (2010). Hydrochemical characteristics and quality assessment of shallow groundwater in a coastal area of southwest Bangladesh. Environmental Earth Sciences, 61(5), 1065–1073. https://doi.org/10.1007/s12665-009-0427-4

    Article  CAS  Google Scholar 

  • Bangladesh Bureau of Statistics, BBS. (2011). Statistics and informatics division (SID). Ministry of Planning, Government of the People’s Republic of Bangladesh, Dhaka. Retrived Feburary 15, 2021. From: http://www.bbs.gov.bd

  • Bekkoussa, S., Bekkoussa, B., Taupin, J. -D., Patris, N., & Meddi, M. (2018). Groundwater hydrochemical characterization and quality assessment in the Ghriss Plain basin, northwest Algeria. Journal of Water Supply: Research and Technology-AQUA, 67(5), 458–466. https://doi.org/10.2166/aqua.2018.013

    Article  Google Scholar 

  • Belkhiri, L., & Narany, T. S. (2015). Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 29(6), 2073–2089. https://doi.org/10.1007/s11269-015-0929-7

    Article  Google Scholar 

  • Bhattacharya, P., Jacks, G., Ahmed, K. M., Routh, J., & Khan, A. A. (2002). Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69(4), 538–545. https://doi.org/10.1007/s00128-002-0095-5

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A. H., Rakib, M. A., Dampare, S. B., Ganyaglo, S., & Suzuki, S. (2011). Surface water quality assessment in the central part of Bangladesh using multivariate analysis. KSCE Journal of Civil Engineering, 15(6), 995–1003. https://doi.org/10.1007/s12205-011-1079-y

    Article  Google Scholar 

  • Bhuiyan, M. A., Hossain, B. -D., & M., Islam, A. R. M. T., Rakib, M. A., Rahman, M. S., & Ramanathan, A. L. (2016). Assessment of groundwater quality of Lakshimpur district of Bangladesh using water quality indices, geostatistical methods, and multivariate analysis. Environmental Earth Sciences, 75(12), 1–23. https://doi.org/10.1007/s12665-016-5823-y

    Article  CAS  Google Scholar 

  • Bodrud-Doza, M., Bhuiyan, M. A. H., Islam, S. M. D. -U., Rahman, M. S., Haque, M. M., Fatema, K. J., Ahmed, N., Rakib, M. A., & Rahman, M. A. (2019). Hydrogeochemical investigation of groundwater in Dhaka City of Bangladesh using GIS and multivariate statistical techniques. Groundwater for Sustainable Development, 8, 226–244. https://doi.org/10.1016/j.gsd.2018.11.008

    Article  Google Scholar 

  • Bodrud-Doza, M., Islam, S. M. D. -U., Rume, T., Quraishi, S. B., Rahman, M. S., & Bhuiyan, M. A. H. (2020). Groundwater quality and human health risk assessment for safe and sustainable water supply of Dhaka City dwellers in Bangladesh. Groundwater for Sustainable Development, 10, 100374. https://doi.org/10.1016/j.gsd.2020.100374

    Article  Google Scholar 

  • Bromfield, S. M. (1978). The oxidation of manganous ions under acid conditions by an acidophilous actinomycete from acid soil. Soil Research, 16(1), 91–100. https://doi.org/10.1071/SR9780091

    Article  CAS  Google Scholar 

  • Brown, R. M., McClelland, N. I., Deininger, R. A., & O’Connor, M. F. (1972). A water quality index—crashing the psychological barrier. In Indicators of environmental quality (pp. 173–182). Springer.

  • Burgess, W. G., Hasan, M. K., Rihani, E., Ahmed, K. M., Hoque, M. A., & Darling, W. G. (2011). Groundwater quality trends in the Dupi Tila aquifer of Dhaka, Bangladesh: Sources of contamination evaluated using modelling and environmental isotopes. International Journal of Urban Sustainable Development, 3(1), 56–76. https://doi.org/10.1080/19463138.2011.554662

    Article  Google Scholar 

  • Caraballo, M. A., Macías, F., Nieto, J. M., & Ayora, C. (2016). Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation. Science of the Total Environment, 539, 427–435. https://doi.org/10.1016/j.scitotenv.2015.08.156

    Article  CAS  Google Scholar 

  • Chapagain, S. K., Pandey, V. P., Shrestha, S., Nakamura, T., & Kazama, F. (2010). Assessment of deep groundwater quality in Kathmandu Valley using multivariate statistical techniques. Water, Air, & Soil Pollution, 210(1), 277–288. https://doi.org/10.1007/s11270-009-0249-8

    Article  CAS  Google Scholar 

  • Chen, K., Jiao, J. J., Huang, J., & Huang, R. (2007). Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen. China. Environmental Pollution, 147(3), 771–780. https://doi.org/10.1016/j.envpol.2006.09.002

    Article  CAS  Google Scholar 

  • Chidambaram, S., Anandhan, P., Prasanna, M. V., Srinivasamoorthy, K., & Vasanthavigar, M. (2013). Major ion chemistry and identification of hydrogeochemical processes controlling groundwater in and around Neyveli lignite mines, Tamil Nadu. South India. Arabian Journal of Geosciences, 6(9), 3451–3467. https://doi.org/10.1007/s12517-012-0589-3

    Article  CAS  Google Scholar 

  • DoE,. (1997). Department of environment, the environment conservation rules 1997. Government of the People’s Republic of Bangladesh.

    Google Scholar 

  • Doneen, L. D. (1964). Water quality for Agriculture (p. 48). University of California, Davis.

    Google Scholar 

  • Durov, S. A. (1948). Natural waters and graphic representation of their composition. Doklady Akademii Nauk, 59(3), 87–90.

    CAS  Google Scholar 

  • Dwivedi, S. L., & Pathak, V. (2007). A preliminary assignment of water quality index to Mandakini River. Chitrakoot. Indian Journal of Environmental Protection, 27(11), 1036.

    CAS  Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69(2), 123–134.

    Article  CAS  Google Scholar 

  • El Alfy, M., Lashin, A., Abdalla, F., & Al-Bassam, A. (2017). Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques. Environmental Pollution, 229, 760–770. https://doi.org/10.1016/j.envpol.2017.05.052

    Article  CAS  Google Scholar 

  • Elumalai, V., Nethononda, V. G., Manivannan, V., Rajmohan, N., Li, P., & Elango, L. (2020). Groundwater quality assessment and application of multivariate statistical analysis in Luvuvhu catchment, Limpopo, South Africa. Journal of African Earth Sciences, 171, 103967. https://doi.org/10.1016/j.jafrearsci.2020.103967

    Article  CAS  Google Scholar 

  • Etteieb, S., Cherif, S., & Tarhouni, J. (2017). Hydrochemical assessment of water quality for irrigation: A case study of the Medjerda River in Tunisia. Applied Water Science, 7(1), 469–480. https://doi.org/10.1007/s13201-015-0265-3

    Article  CAS  Google Scholar 

  • Faisal, B. M. R., Majumder, R. K., Uddin, M. J., & Halim, M. A. (2014). Studies on heavy metals in industrial effluent, river and groundwater of Savar industrial area, Bangladesh by principal component analysis. Int J Geomat Geosci, 5(1), 182–191.

    Google Scholar 

  • Farooq, S., Sharif, T. T., & Alam, S. (2019). Study on Drinking Water Quality Served in Restaurants and Tea Stalls in Gazipur Area. Department of Civil and Environmental Engineering, Islamic University of….

  • Ghalib, H. B. (2017). Groundwater chemistry evaluation for drinking and irrigation utilities in East Wasit province. Central Iraq. Applied Water Science, 7(7), 3447–3467. https://doi.org/10.1007/s13201-017-0575-8

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090.

    Article  CAS  Google Scholar 

  • Hasan, M. A., Ahmed, K. M., Sracek, O., Bhattacharya, P., Von Broemssen, M., Broms, S., Fogelström, J., Mazumder, M. L., & Jacks, G. (2007). Arsenic in shallow groundwater of Bangladesh: Investigations from three different physiographic settings. Hydrogeology Journal, 15(8), 1507–1522. https://doi.org/10.1007/s10040-007-0203-z

    Article  CAS  Google Scholar 

  • Hasan, M., Islam, M. A., Hasan, M. A., Alam, M. J., & Peas, M. H. (2019). Groundwater vulnerability assessment in Savar Upazila of Dhaka District, Bangladesh—A GIS-based DRASTIC modeling. Groundwater for Sustainable Development, 9, 100220.

    Article  Google Scholar 

  • Hashmi, I., Farooq, S., & Qaiser, S. (2009). Incidence of fecal contamination within a public drinking water supply in Ratta Amral. Rawalpindi. Desalination and Water Treatment, 11(1–3), 124–131. https://doi.org/10.5004/dwt.2009.851

    Article  CAS  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), 807–816. https://doi.org/10.1016/S0043-1354(99)00225-0

    Article  CAS  Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300–306.

    Google Scholar 

  • Hounslow, A. W. (1995). Water quality data, analysis and interpretation, Arthur W. Hounslow.

  • Iqbal, A. B., Rahman, M. M., Mondal, D. R., Khandaker, N. R., Khan, H. M., Ahsan, G. U., Jakariya, M., & Hossain, M. M. (2020). Assessment of Bangladesh groundwater for drinking and irrigation using weighted overlay analysis. Groundwater for Sustainable Development, 10, 100312. https://doi.org/10.1016/j.gsd.2019.100312

    Article  Google Scholar 

  • Ishaku, J. M. (2011). Assessment of groundwater quality index for Jimeta-Yola area, northeastern Nigeria. Journal of Geology and Mining Research, 3(9), 219–231. https://doi.org/10.5897/JGMR.9000006

    Article  Google Scholar 

  • Ishaku, J. M., Ahmed, A. S., & Abubakar, M. A. (2012). Assessment of groundwater quality using water quality index and GIS in Jada, northeastern Nigeria. International Research Journal of Geology and Mining, 2(3), 54–61.

    Google Scholar 

  • Islam, A. R. M. T., Shen, S., Haque, M. A., Bodrud-Doza, M., Maw, K. W., & Habib, M. A. (2018a). Assessing groundwater quality and its sustainability in Joypurhat district of Bangladesh using GIS and multivariate statistical approaches. Environment, Development and Sustainability, 20(5), 1935–1959. https://doi.org/10.1007/s10668-017-9971-3

    Article  Google Scholar 

  • Islam, I. R., Rahman, M., Reza, A., & Rahman, M. (2013). Groundwater geochemistry and its implication for arsenic enrichment and mobilization in shallow alluvial aquifers of Pakshi Union, Ishwardi, Pabna. Bangladesh. Int J Chem Mater Sci, 1(4), 69–78.

    Google Scholar 

  • Islam, M. B., Firoz, A. B. M., Foglia, L., Marandi, A., Khan, A. R., Schüth, C., & Ribbe, L. (2017a). A regional groundwater-flow model for sustainable groundwater-resource management in the South Asian megacity of Dhaka. Bangladesh. Hydrogeology Journal, 25(3), 617–637. https://doi.org/10.1007/s10040-016-1526-4

    Article  CAS  Google Scholar 

  • Islam, M., Bashar, K., Ahmed, N., Rasul, M. G., Hossain, S., & Sarker, M. M. R. (2018b). Hydrogeologic characteristics and groundwater potentiality of lower aquifer of Singair Upazila, Manikganj District, Bangladesh. Journal of Bangladesh Academy of Sciences, 42(1), 25–40. https://doi.org/10.3329/jbas.v42i1.37830

    Article  CAS  Google Scholar 

  • Islam, M. A., Murshed, S. & Hasan, M. (2020). Selecting suitable landfill site with multi criteria evaluation and GIS: a case of Savar upazila in Bangladesh. Arabian Journal of Geosciences, 13(18), 1–15. https://doi.org/10.1007/s12517-020-05925-3

  • Islam, M. A., Zahid, A., Rahman, M. M., Rahman, M. S., Islam, M. J., Akter, Y., Shammi, M., Bodrud-Doza, M., & Roy, B. (2017b). Investigation of groundwater quality and its suitability for drinking and agricultural use in the south central part of the coastal region in Bangladesh. Expo Health, 9(1), 27–41. https://doi.org/10.1007/s12403-016-0220-z

    Article  CAS  Google Scholar 

  • Islam, S. M. D., & Azam, G. (2015). Seasonal variation of physicochemical and toxic properties in three major rivers; Shitalakhya, Buriganga and Turag around Dhaka city. Bangladesh. J. Bio. Environ. Sci, 7(3), 120–131.

    Google Scholar 

  • Islam, S. M., Majumder, R. K., Uddin, M. J., Khalil, M., & Ferdous Alam, M. (2017c). Hydrochemical characteristics and quality assessment of groundwater in Patuakhali district, southern coastal region of Bangladesh. Exposure and Health, 9(1), 43–60. https://doi.org/10.1007/s12403-016-0221-y

    Article  CAS  Google Scholar 

  • Jackson, J. E. (2005). A user’s guide to principal components (Vol. 587). John Wiley & Sons.

  • Jahan, C. S., Rahaman, M., Arefin, R., Ali, M., & Mazumder, Q. H. (2019). Delineation of groundwater potential zones of Atrai-Sib river basin in north-west Bangladesh using remote sensing and GIS techniques. Sustainable Water Resources Management, 5(2), 689–702. https://doi.org/10.1007/s40899-018-0240-x

    Article  Google Scholar 

  • Jiang, Y., Wu, Y., Groves, C., Yuan, D., & Kambesis, P. (2009). Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan. China. Journal of Contaminant Hydrology, 109(1–4), 49–61. https://doi.org/10.1016/j.jconhyd.2009.08.001

    Article  CAS  Google Scholar 

  • Kabir, M. M., Hossain, N., Islam, A. R. M. T., Akter, S., Fatema, K. J., Hilary, L. N., Hasanuzzaman, M., Didar-ul-Alam, M., & Choudhury, T. R. (2021). Characterization of groundwater hydrogeochemistry, quality, and associated health hazards to the residents of southwestern Bangladesh. Environmental Science and Pollution Research, 28(48), 68745–68761. https://doi.org/10.1007/s11356-021-15152-2

    Article  CAS  Google Scholar 

  • Kelley, W. P. (1963). Use of saline irrigation water. Soil Science, 95(6), 385–391.

    Article  Google Scholar 

  • Ketata, M., Gueddari, M., & Bouhlila, R. (2012). Use of geographical information system and water quality index to assess groundwater quality in El Khairat deep aquifer (Enfidha, Central East Tunisia). Arabian Journal of Geosciences, 5(6), 1379–1390. https://doi.org/10.1007/s12517-011-0292-9

    Article  Google Scholar 

  • Khalid, S. (2019). An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. Journal of Geochemical Exploration, 197, 14–26. https://doi.org/10.1016/j.gexplo.2018.11.007

    Article  CAS  Google Scholar 

  • Khan, M. K. A., Alam, M., Islam, M. S., Hassan, M. Q., & Al-Mansur, M. A. (2011). Environmental pollution around Dhaka EPZ and its impact on surface and groundwater. Bangladesh Journal of Scientific and Industrial Research, 46(2), 153–162. https://doi.org/10.3329/bjsir.v46i2.8181

    Article  CAS  Google Scholar 

  • Khan, M. R., Michael, H. A., Nath, B., Huhmann, B. L., Harvey, C. F., Mukherjee, A., Choudhury, I., Chakraborty, M., Ullah, M. S., & Ahmed, K. M. (2019a). High-arsenic groundwater in the southwestern Bengal Basin caused by a lithologically controlled deep flow system. Geophysical Research Letters, 46(22), 13062–13071. https://doi.org/10.1029/2019GL084767

    Article  CAS  Google Scholar 

  • Khan, M. R., Koneshloo, M., Knappett, P. S. K., Ahmed, K. M., Bostick, B. C., Mailloux, B. J., Mozumder, R. H., Zahid, A., Harvey, C. F., & Van Geen, A. (2016). Megacity pumping and preferential flow threaten groundwater quality. Nature Communications, 7(1), 1–8. https://doi.org/10.1038/ncomms12833

    Article  CAS  Google Scholar 

  • Khan, Q., Kalbus, E., Alshamsi, D. M., Mohamed, M. M., & Liaqat, M. U. (2019b). Hydrochemical analysis of groundwater in remah and Al khatim regions. United Arab Emirates. Hydrology, 6(3), 60. https://doi.org/10.3390/hydrology6030060

    Article  CAS  Google Scholar 

  • Knappett, P. S. K., Mailloux, B. J., Choudhury, I., Khan, M. R., Michael, H. A., Barua, S., Mondal, D. R., Steckler, M. S., Akhter, S. H., & Ahmed, K. M. (2016). Vulnerability of low-arsenic aquifers to municipal pumping in Bangladesh. Journal of Hydrology, 539, 674–686. https://doi.org/10.1016/j.jhydrol.2016.05.035

    Article  CAS  Google Scholar 

  • Kraiem, Z., Zouari, K., Chkir, N., & Agoune, A. (2014). Geochemical characteristics of arid shallow aquifers in Chott Djerid, south-western Tunisia. Journal of Hydro-Environment Research, 8(4), 460–473. https://doi.org/10.1016/j.jher.2013.06.002

    Article  Google Scholar 

  • Kumar, P. J. S. (2014). Evolution of groundwater chemistry in and around Vaniyambadi industrial area: Differentiating the natural and anthropogenic sources of contamination. Geochemistry, 74(4), 641–651. https://doi.org/10.1016/j.chemer.2014.02.002

    Article  CAS  Google Scholar 

  • Kundu, A., & Nag, S. K. (2018). Assessment of groundwater quality in Kashipur block, Purulia district. West Bengal. Applied Water Science, 8(1), 1–18. https://doi.org/10.1007/s13201-018-0675-0

    Article  CAS  Google Scholar 

  • Levins, I., & Gosk, E. (2008). Trace elements in groundwater as indicators of anthropogenic impact. Environmental Geology, 55(2), 285–290. https://doi.org/10.1007/s00254-007-1003-4

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2013). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County. China. Environmental Earth Sciences, 69(7), 2211–2225. https://doi.org/10.1007/s12665-012-2049-5

    Article  CAS  Google Scholar 

  • Lloyd, J. W., & Heathcote, J. A. A. (1985). Natural inorganic hydrochemistry in relation to ground water.

  • Mallick, J., Singh, C. K., AlMesfer, M. K., Kumar, A., Khan, R. A., Islam, S., & Rahman, A. (2018). Hydro-geochemical assessment of groundwater quality in Aseer region. Saudi Arabia. Water, 10(12), 1847. https://doi.org/10.3390/w10121847

    Article  CAS  Google Scholar 

  • Marghade, D., Malpe, D. B., & Zade, A. B. (2012). Major ion chemistry of shallow groundwater of a fast growing city of Central India. Environmental Monitoring and Assessment, 184(4), 2405–2418. https://doi.org/10.1007/s10661-011-2126-3

    Article  CAS  Google Scholar 

  • Mihajlov, I., Mozumder, M. R. H., Bostick, B. C., Stute, M., Mailloux, B. J., Knappett, P. S. K., Choudhury, I., Ahmed, K. M., Schlosser, P., & van Geen, A. (2020). Arsenic contamination of Bangladesh aquifers exacerbated by clay layers. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-16104-z

    Article  CAS  Google Scholar 

  • Mitra, B. K., Sasaki, C., & Keijirou, E. (2006). Spatial and temporal variation of ground water quality in sand dune area of aomori prefecture in Japan. 2006 ASAE Annual Meeting, 1.

  • Momtaz, H., Alam, F., Ahsan, M. A., Akbor, M. A., & Rashid, M. M. (2012). Surface water quality around DEPZ industrial area, Savar, Dhaka. Bangladesh Journal of Scientific and Industrial Research, 47(3), 279–286. https://doi.org/10.3329/bjsir.v47i3.13061

    Article  CAS  Google Scholar 

  • Monsur, M. H., & Paepe, R. (1990). Heavy mineral characteristics of the Barind and Madhupur formations of the Bengal Basin, Bangladesh. Bangladesh Journal Geology, 9, 41–46.

    Google Scholar 

  • Mridul, M. M. I., Huda, M. E., Khan, M., Roy, S. K., Akter, S., Kabir, M. M., & Mouna, S. S. P. (2020). Groundwater quality and vulnerability assessment in Savar Dhaka Bangladesh. Journal of Biological and Environmental Sciences, 17, 1–9.

    Google Scholar 

  • Mukherjee, A., Bhattacharya, P., & Ahmed, K. M. (2018). Groundwater quality of Meghna River Basin aquifers. In Groundwater of South Asia (pp. 307–317). Springer. https://doi.org/10.1007/978-981-10-3889-1_19

  • Nahar, M. S., Zhang, J., Ueda, A., & Yoshihisa, F. (2014). Investigation of severe water problem in urban areas of a developing country: The case of Dhaka. Bangladesh. Environmental Geochemistry and Health, 36(6), 1079–1094. https://doi.org/10.1007/s10653-014-9616-5

    Article  CAS  Google Scholar 

  • Naseem, S., Rafique, T., Bashir, E., Bhanger, M. I., Laghari, A., & Usmani, T. H. (2010). Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert. Pakistan. Chemosphere, 78(11), 1313–1321. https://doi.org/10.1016/j.chemosphere.2010.01.010

    Article  CAS  Google Scholar 

  • Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environmental Health Perspectives, 121(3), 295–302. https://doi.org/10.1289/ehp.1205875

    Article  Google Scholar 

  • Nozibul Haque, M., Shahid, S., Keramat, M., & Mohsenipour, M. (2016). GIS integration of hydrogeological and geoelectrical data for groundwater potential modeling in the western part of greater Kushtia district of Bangladesh. Water Resources, 43(2), 283–291. https://doi.org/10.1134/S0097807816020111

    Article  CAS  Google Scholar 

  • Obiefuna, G. I., & Sheriff, A. (2011). Assessment of shallow ground water quality of Pindiga Gombe area, Yola area, NE, Nigeria for irrigation and domestic purposes. Research Journal of Environmental and Earth Sciences, 3(2), 131–141.

    Google Scholar 

  • Oişte, A. M. (2014). Groundwater quality assessment in urban environment. International Journal of Environmental Science and Technology, 11(7), 2095–2102. https://doi.org/10.1007/s13762-013-0477-8

    Article  CAS  Google Scholar 

  • Parvin, M. (2019). The rate of decline and trend line analysis of groundwater underneath Dhaka and Gazipur City. Journal of Water Resource and Protection, 11(3), 348–356. https://doi.org/10.4236/jwarp.2019.113020

    Article  Google Scholar 

  • Pazand, K., Khosravi, D., Ghaderi, M. R., & Rezvanianzadeh, M. R. (2018). Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in Central Iran. Groundwater for Sustainable Development, 6, 245–254. https://doi.org/10.1016/j.gsd.2018.01.008

    Article  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Raghunath, H. M. (1987). Ground water: hydrogeology, ground water survey and pumping tests, rural water supply and irrigation systems. New Age International.

  • Rahman, M. S., Saha, N., & Molla, A. H. (2014). Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone. Bangladesh. Environmental Earth Sciences, 71(5), 2293–2308. https://doi.org/10.1007/s12665-013-2631-5

    Article  CAS  Google Scholar 

  • Rahman, M., Sultana, R., Shammi, M., Bikash, J., Ahmed, T., Maruo, M., Kurasaki, M., & Uddin, M. K. (2016). Assessment of the status of groundwater arsenic at Singair Upazila, Manikganj Bangladesh; exploring the correlation with other metals and ions. Exposure and Health, 8(2), 217–225. https://doi.org/10.1007/s12403-016-0196-8

    Article  CAS  Google Scholar 

  • Rahman, S. H., & Islam, S. M. D. (2016). Degrading riverine ecology of Bangladesh and options for management. SUB J. Sustain. Environ. Develop, 1, 11–27.

    Google Scholar 

  • Ravikumar, P., Somashekar, R. K., & Prakash, K. L. (2015). Suitability assessment of deep groundwater for drinking and irrigation use in the parts of Hoskote and Malur Taluks, Karnataka (India). Environmental Research, Engineering and Management, 71(1), 15–26. https://doi.org/10.5755/j01.erem.71.1.9809

    Article  Google Scholar 

  • Rezaei, A., & Hassani, H. (2018). Hydrogeochemistry study and groundwater quality assessment in the north of Isfahan. Iran. Environmental Geochemistry and Health, 40(2), 583–608. https://doi.org/10.1007/s10653-017-0003-x

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of. Saline and Alkali Soils. Handbook, 60.

  • Sadashivaiah, C., Ramakrishnaiah, C. R., & Ranganna, G. (2008). Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. International Journal of Environmental Research and Public Health, 5(3), 158–164. https://doi.org/10.3390/ijerph5030158

    Article  CAS  Google Scholar 

  • Sadat-Noori, S. M., Ebrahimi, K., & Liaghat, A. M. (2014). Groundwater quality assessment using the water quality index and GIS in Saveh-Nobaran aquifer. Iran. Environmental Earth Sciences, 71(9), 3827–3843. https://doi.org/10.1007/s12665-013-2770-8

    Article  CAS  Google Scholar 

  • Saeedi, M., Abessi, O., Sharifi, F., & Meraji, H. (2010). Development of groundwater quality index. Environmental Monitoring and Assessment, 163(1), 327–335. https://doi.org/10.1007/s10661-009-0837-5

    Article  CAS  Google Scholar 

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78. https://doi.org/10.1016/j.jenvman.2016.10.023

    Article  CAS  Google Scholar 

  • Sahu, P., & Sikdar, P. K. (2008). Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal. India. Environmental Geology, 55(4), 823–835. https://doi.org/10.1007/s00254-007-1034-x

    Article  CAS  Google Scholar 

  • Schoeller, H. (1967). Geochemistry of groundwater—an international guide for research and practice (Chap. 15, pp. 1–18). UNESCO Paris.

  • Seddique, A. A., Masuda, H., Mitamura, M., Shinoda, K., Yamanaka, T., Nakaya, S., & Ahmed, K. M. (2011). Mineralogy and geochemistry of shallow sediments of Sonargaon, Bangladesh and implications for arsenic dynamics: Focusing on the role of organic matter. Applied Geochemistry, 26(4), 587–599. https://doi.org/10.1016/j.apgeochem.2011.01.016

    Article  CAS  Google Scholar 

  • Selvam, S., Venkatramanan, S., Chung, S. Y., & Singaraja, C. (2016). Identification of groundwater contamination sources in Dindugal district of Tamil Nadu, India using GIS and multivariate statistical analyses. Arabian Journal of Geosciences, 9(5), 407. https://doi.org/10.1007/s12517-016-2417-7

    Article  CAS  Google Scholar 

  • Seyedmohammadi, J., Motavassel, M., Maddahi, M. H., & Nikmanesh, S. (2016). Application of nanochitosan and chitosan particles for adsorption of Zn (II) ions pollutant from aqueous solution to protect environment. Modeling Earth Systems and Environment, 2(3), 1–12. https://doi.org/10.1007/s40808-016-0226-3

    Article  Google Scholar 

  • Sharmin, S., Mia, J., Miah, M. S., & Zakir, H. M. (2020). Hydrogeochemistry and heavy metal contamination in groundwaters of Dhaka metropolitan city, Bangladesh: Assessment of human health impact. HydroResearch, 3, 106–117. https://doi.org/10.1016/j.hydres.2020.10.003

    Article  Google Scholar 

  • Singh, C. K., Shashtri, S., & Mukherjee, S. (2011). Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab. India. Environmental Earth Sciences, 62(7), 1387–1405. https://doi.org/10.1007/s12665-010-0625-0

    Article  CAS  Google Scholar 

  • Sresto, M. A., Siddika, S., Haque, M. N., & Saroar, M. (2021). Application of fuzzy analytic hierarchy process and geospatial technology to identify groundwater potential zones in north-west region of Bangladesh. Environmental Challenges, 5, 100214. https://doi.org/10.1016/j.envc.2021.100214

    Article  Google Scholar 

  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain—A case study from Mettur taluk, Salem district, Tamil Nadu. India. Journal of Earth System Science, 117(1), 49. https://doi.org/10.1007/s12040-008-0012-3

    Article  CAS  Google Scholar 

  • Szabolcs, I. (1964). The influence of irrigation water of high sodium carbonate content on soils. Agrokémia És Talajtan, 13(sup), 237–246.

  • Tiwari, T. N., & Mishra, M. A. (1985). A preliminary assignment of water quality index of major Indian rivers. Indian Journal of Environmental Protection, 5(4), 276–279.

    CAS  Google Scholar 

  • Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology. John Wiley & Sons.

    Google Scholar 

  • Trieff, N. M. (1980). Environment and health.

  • UNDP. (1982). Groundwater survey: the hydrogeological conditions of Bangladesh. Technical Report DP/UN/BGD-74–009/1. United Nation Development Programme (UNDP), New York.

  • USGS. (2006). National field manual for the collection of water-quality data, book 9, Version 2.0, 9/2006. Retrived Feburary 10, 2021. From: http://water.usgs.gov/owq/FieldManual/Chapter6/Archive/Section6.6_4-98.pdf

  • Valdes, D., Dupont, J. -P., Laignel, B., Ogier, S., Leboulanger, T., & Mahler, B. J. (2007). A spatial analysis of structural controls on Karst groundwater geochemistry at a regional scale. Journal of Hydrology, 340(3–4), 244–255. https://doi.org/10.1016/j.jhydrol.2007.04.014

    Article  Google Scholar 

  • Verma, A., Shetty, B. K., Guddattu, V., Chourasia, M. K., & Pundir, P. (2017). High prevalence of dental fluorosis among adolescents is a growing concern: A school based cross-sectional study from southern India. Environmental Health and Preventive Medicine, 22(1), 1–7. https://doi.org/10.1186/s12199-017-0624-9

    Article  CAS  Google Scholar 

  • Walraevens, K., Bakundukize, C., Mtoni, Y. E., & Van Camp, M. (2018). Understanding the hydrogeochemical evolution of groundwater in Precambrian basement aquifers: A case study of Bugesera region in Burundi. Journal of Geochemical Exploration, 188, 24–42. https://doi.org/10.1016/j.gexplo.2018.01.003

    Article  CAS  Google Scholar 

  • WHO, G. (2011). Guidelines for drinking-water quality. World Health Organization, 216, 303–304.

    Google Scholar 

  • Wu, T. N., Huang, Y. -C., Lee, M. -S., & Kao, C. -M. (2005). Source identification of groundwater pollution with the aid of multivariate statistical analysis. Water Science and Technology: Water Supply, 5(6), 281–288.

    Google Scholar 

  • Yasmin, G., Islam, D., Islam, M. T., & Adham, A. K. M. (2019). Evaluation of groundwater quality for irrigation and drinking purposes in Barishal District of Bangladesh. Fundamental and Applied Agriculture, 4(1), 632–641. https://doi.org/10.5455/faa.301258

    Article  Google Scholar 

  • Zahid, A. (2003). Investigation on Soil, Sediments and Groundwater Environment of Hazaribagh Leather Processing Zone of Dhaka City. Thesis, Institute of Geology and Paleontology, University of Tuebingen, Genmany.

    Google Scholar 

  • Zheng, Y., Van Geen, A., Stute, M., Dhar, R., Mo, Z., Cheng, Z., Horneman, A., Gavrieli, I., Simpson, H. J., & Versteeg, R. (2005). Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: Implications for deeper aquifers as drinking water sources. Geochimica Et Cosmochimica Acta, 69(22), 5203–5218. https://doi.org/10.1016/j.gca.2005.06.001

Download references

Acknowledgements

The authors are grateful to the Ministry of Science and Technology (MOST) of the People’s Republic of Bangladesh for funding the research. The authors also thank Dr. Peter McIntyre of the University of New South Wales, Canberra, Australia for editorial help.

Funding

The research was funded by the Ministry of Science and Technology (MOST), the Government of the People’s Republic of Bangladesh.

Author information

Authors and Affiliations

Authors

Contributions

Research concept, MH, AI, and MAH; methodology, MH, AI, MAH, and MR; sampling and analysis, MH and JA; statistical analysis, MH and MR; original draft, MH, AI and MR; and manuscript review, MAH and AI.

Corresponding author

Correspondence to Mahmudul Hasan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M., Islam, M., Alam, M. et al. Hydrogeochemical characterization and quality assessment of groundwater resource in Savar — an industrialized zone of Bangladesh. Environ Monit Assess 194, 549 (2022). https://doi.org/10.1007/s10661-022-10137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10137-1

Keywords

Navigation