Skip to main content

Advertisement

Log in

Effects of meteorological parameters and fuel composition on the air pollution production from motor vehicles

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2022

This article has been updated

Abstract

The aim of this study was to investigate the effect of changes in meteorological parameters and fuel composition on the emission rate of air pollutants in the vehicle fleet of the Tehran Metropolis. The results of this study can be used in management decisions to reduce the emission of air pollutants. In this paper, based on the international vehicle emission model and using mathematical equations, the effects of changing meteorological parameters and fuel composition on the emission of pollutants were modeled. The emission rates of CO, VOCs, and NOx pollutants were the most sensitive to the changes in meteorological parameters, respectively. Among all parameters studied in this research, the changes in sulfur level had the greatest effect on the emission of pollutants from the vehicle fleet of Tehran Metropolis. If the fuel was replaced with Euro 5 standard instead of Euro 3, the emission rates of CO, VOCs, NOx, PM, and SOx pollutants from the vehicle fleet of Tehran Metropolis would be reduced by 9%, 6%, 5%, 14%, and 90%, respectively. Managing and reducing the sources of production and emission of air pollution is one of the best ways to reduce the air pollution. In general, since the emission of pollutants from the fleet of Tehran Metropolis in the cold seasons of the year is greater than during hot seasons and the problem of air pollution is exacerbated by air stability, using Euro 5 fuel in cold seasons is one of the efficient ways to reduce the air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

References 

  • Abdullah, N. R., Shahruddin, N. S., Mamat, A. M. I., Kasolang, S., Zulkifli, A., & Mamat, R. (2013). Effects of Air Intake Pressure to the Fuel Economy and Exhaust Emissions on a Small SI Engine. Procedia Engineering, 68, 278–284. https://doi.org/10.1016/j.proeng.2013.12.180

    Article  CAS  Google Scholar 

  • Abdulrazzaq, L. R., Abdulkareem, M. N., Yazid, M., Borhan, M. N., & Mahdi, M. S. (2020). Traffic congestion: shift from private car to public transportation. Civil Engineering Journal, 6(8), 1547–1554.

    Article  Google Scholar 

  • Alipourmohajer, S., Rashidi, Y., & Atabi, F. (2019). Verification of IVE model for SAIPA Co. fleet emission. Pollution, 5, 235–245.

    CAS  Google Scholar 

  • Alizadeh-Choobari, O., Ghafarian, P., & Adibi, P. (2016). Inter-annual variations and trends of the urban warming in Tehran. Atmospheric Research, 170, 176–185. https://doi.org/10.1016/j.atmosres.2015.12.001

    Article  Google Scholar 

  • Angelevska, B., Atanasova, V., & Andreevski, I. (2021). Urban air quality guidance based on measures categorization in road transport Civil. Engineering Journal, 7:253–267. https://doi.org/10.28991/cej-2021-03091651

  • Asanuma, T., Hirota, S., Yanaka, M., Tsukasaki, Y., & Tanaska, T. (2003). Effect of sulfur-free and aromatics-free diesel fuel on vehicle exhaust emissions using simultaneous PM and NOx reduction systems. SAE Paper, 2003-01-1865.

  • Azid, A., Juahir, H., Toriman, M., Endut, A., Abdul Rahman, M., Amri Kamarudin, M., Latif, M., Mohd Saudi, A., Che Hasnam, C., & Yunus, K. (2016). Selection of the most significant variables of air pollutants using sensitivity analysis. Journal of Testing and Evaluation, 44(1), 376–384. https://doi.org/10.1520/JTE20140325

    Article  CAS  Google Scholar 

  • Bahari, R. A., Abbaspour, R. A., & Pahlavani, P. (2014). Prediction of pm2.5 concentrations using temperature inversion effects based on an artificial neural network. The 1st isprs international conference on Geospatial Information Research. https://doi.org/10.5194/isprsarchives-XL-2-W3-73-2014

  • Bari, C. S., Navandar, Y. V., & Dhamaniya, A. (2020). Vehicular emission modeling at Toll Plaza Using Performance Box Data. J Hazardous Toxic Radioact Waste, 24, 1–19. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000550

    Article  Google Scholar 

  • Choi, D., Beardsley, M., Brezezinski, D., Koupal, J., & Warila, J. (2000). MOVES sensitivity analysis: the impacts of temperature and humidity on emissions U.S. Environmental Protection Agency - Proceedings from the 19th Annual International Emission Inventory Conference, Ann Arbor, Michigan, 1–10.

  • Cinar, C., Uyumaz, A., Solmaz, H., Sahin, F., Polat, S., & Yilmaz, E. (2015). Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels. Fuel Process Technol, 130, 275–281. https://doi.org/10.1016/j.fuproc.2014.10.026

    Article  CAS  Google Scholar 

  • Dangar, H., & Rathod, G. P. (2013). Combine effect of exhaust gas recirculation (EGR) and varying inlet air pressure on performance and emission of diesel engine. Journal of Mechanical and Civil Engineering, 6, 26–33. https://doi.org/10.9790/1684-0652633.

    Article  Google Scholar 

  • Davis, N., Lents, J., Osses, M., Nikkila, N., & Barth, M. (2005). Part 3: Developing Countries: Development and Application of an International Vehicle Emissions Model. Transp Res Record, 1939, 155–165. https://doi.org/10.1177/0361198105193900118

    Article  Google Scholar 

  • Dehghan, A., Khanjani, N., Bahrampour, A., Goudarzi, G., & Yunesian, M. (2018). The relation between air pollution and respiratory deaths in Tehran, Iran- using generalized additive models. BMC PULM MED, 18(1), 49. https://doi.org/10.1186/s12890-018-0613-9

    Article  CAS  Google Scholar 

  • Deshmukh, P., Kimbrough, S., Krabbe, S., Logan, R., Isakov, V., & Baldauf, R. (2020). Identifying air pollution source impacts in urban communities using mobile monitoring. Science of the Total Environment, 715, 136979. https://doi.org/10.1016/j.scitotenv.2020.136979

  • EPA. (2010). Technical Guidance on the Use of MOVES 2010 for Emission Inventory Preparation in State Implementation Plans and Transportation Conformity. US-Environmental Protection Agency, 420-B-10-023.

  • Fotouhi, A., & Montazeri-Gh, M. (2013). Tehran driving cycle development using the k-means clustering method. Scientia Iran, 20(2), 286–293.

    Google Scholar 

  • Gao, C. K., Gao, C. B., Song, K. H., Xing, Y. H., & Chen, W. W. (2020). Vehicle emissions inventory in high spatial-temporal resolution and emission reduction strategy in Harbin-Changchun Megalopolis. Process Safety and Environmental Protection, 138, 236–245. https://doi.org/10.1016/j.psep.2020.03.027

    Article  CAS  Google Scholar 

  • Gibergans-Baguena, J., Hervada-Sala, C., & Jarauta-Bragulat, E. (2020). The quality of urban air in Barcelona: A new approach applying compositional data analysis methods. Emerging Science Journal, 4(2), 113–121. https://doi.org/10.28991/esj-2020-01215

  • Ghadiri, Z., Rashidi, Y., & Broomandi, P. (2017). Evaluation Euro IV of effectiveness in transportation systems of Tehran on air quality: Application of IVE model. Pollution, 3(4), 639–653.

    CAS  Google Scholar 

  • Grange, S. K., Farren, N. J., Vaughan, A. R., Rose, R. A., & Carslaw, D. C. (2019). Strong Temperature Dependence for Light-Duty Diesel Vehicle NOx Emissions. Environmental Science and Technology, 53, 6587–6596. https://doi.org/10.1021/acs.est.9b01024.

    Article  CAS  Google Scholar 

  • Halimi, M., Farajzadeh, M., & Zarei, Z. (2016). Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps. Pollution, 2(4), 375–86.

    Google Scholar 

  • Hall, D. L., Anderson, D. C., Martin, C. R., Ren, X. R., Salawitch, R. J., & He, H., et al. (2020). Using near-road observations of CO, NOy, and CO2 to investigate emissions from vehicles: Evidence for an impact of ambient temperature and specific humidity. Atmospheric Environment, 232, 12. https://doi.org/10.1016/j.atmosenv.2020.117558

  • Heger, M., & Sarraf, M. (2018). Air pollution in Tehran: health costs, sources, and policies. Environment and natural resources global practice discussion paper 06. World Bank report, April 2018, 38p.

  • Huy, L. N., Oanh, N. T. K., Htut, T. T., & Hlaing, O. M. T. (2020). Emission inventory for on-road traffic fleets in Greater Yangon, Myanmar. Atmospheric Pollution Research, 11, 702–713. https://doi.org/10.1016/j.apr.2019.12.021

    Article  CAS  Google Scholar 

  • ICCT (The International Council on Clean Transportation). (2014). China V Gasoline and Diesel Fuel Quality Standards 6.

  • ISSRC. (2008). International Sustainable Systems Research Center, IVE Model User Manual. Version 2.0.

  • J I C A (JICA). (1997). The Study on an Integrated Master Plan for Air Pollution Control in The Greater Area in The Islamic Republic of Iran.

  • Jafarian, H., & Behzadi, S. (2020). Evaluation of PM2.5 emissions in Tehran by means of remote sensing and regression models. Pollution, 6(3), 521–529.

  • Jamaati, H., Attarchi, M., Hassani, S., Farid, E., Seyedmehdi, S. M., & Pormehr, P. S. (2018). Investigating air quality status and air pollutant trends over the Metropolitan Area of Tehran, Iran over the past decade between 2005 and 2014. Environmental Health Toxicology, 33(2),e2018010.

  • Jamriska, M., Morawska, L., & Mergersen, K. (2008). The Effect of Temperature and Humidity on Size Segregated Traffic Exhaust Particle Emissions. Atmospheric Environment, 42, 2369–2382. https://doi.org/10.1016/j.atmosenv.2007.12.038

    Article  CAS  Google Scholar 

  • Jokar Arsanjani, J. (2011). Dynamic land use/cover change modelling: Geosimulation and multiagent-based modelling (hardback)(series: springer theses) (XVII (p. 139). Springer.

    Google Scholar 

  • Kousari, M. R., Ekhtesasi, M. R., Tazeh, M., Saremi Naeini, M. A., & Asadi Zarch, M. A. (2011). An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theoretical and Applied Climatology, 103, 321–335. https://doi.org/10.1007/s00704-010-0304-9

    Article  Google Scholar 

  • Kwon, S., Park, Y., Park, J., Kim, J., Choi, K., & Cha, J. (2017). Characteristics of on-road NOx emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system. Science of the Total Environment, 576, 70–77. https://doi.org/10.1016/j.scitotenv.2016.10.101

    Article  CAS  Google Scholar 

  • Li, P., Lu, Y., & Wang, J. (2020). The effects of fuel standards on air pollution: evidence from China. Journal of Development Economics, 146, 10248810. https://doi.org/10.1016/j.jdeveco.2020.102488

  • Lim, C. S., Lim, J. H., Cha, J. S., & Lim, J. Y. (2019). Comparative effects of oxygenates-gasoline blended fuels on the exhaust emissions in gasoline-powered vehicles. Journal of Environmental Management, 239, 103–113. https://doi.org/10.1016/j.jenvman.2019.03.039

    Article  CAS  Google Scholar 

  • Liu, L., Yang, X., Liu, H., Wang, M., Welles, S., Márquez, S., Frank, A., & Haas, C. N. (2016). Spatial-temporal analysis of air pollution, climate change, and total mortality in 120 cities of China, 2012–2013. Frontiers Public Health, 4, 143. https://doi.org/10.3389/fpubh.2016.00143

  • Mirjalili, S. (2019). Genetic algorithm. Evolutionary algorithms and neural networks. Springer 3–14.

  • Mohammadiha, A., Malakooti, H., & Esfahanian, V. (2018). Development of reduction scenarios for criteria air pollutants emission in Tehran Traffic Sector, Iran. The Science of the Total Environment, 622, 17–28.

    Article  Google Scholar 

  • Mostafavi, S., Safikhani, H., & Salehfard, S. (2021). Air pollution distribution in Arak city considering the effects of neighboring pollutant industries and urban traffics. International Journal of Energy and Environmental Engineering, 1–27.

  • Ntziachristos, L., Gkatzoflias, D., Kouridis, C., & Samaras, Z. (2009). COPERT: a European road transport emission inventory model. In Information Technologies in Environmental Engineering 491–504, Environmental Science and Engineering, Springer Berlin Heidelberg

  • Park, E. S., Sullivan, E. W., Kang, D. H., Ying, Q., & Spiegelman, C. H. (2020). Assessment of mobile source contributions in El Paso by PMF receptor modeling coupled with wind direction analysis. The Science of the Total Environment, 720, 137527. https://doi.org/10.1016/j.scitotenv.2020.137527

  • Parliament, E (2009). Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009. Official Journal of the European Union, 140, 88–113.

  • Pathak, S. K., Sood, V., & Singh, Y., et al. (2016). Real world vehicle emissions: their correlation with driving parameters. Transportation Research Part D: Transport and Environment, 44, 157–176. https://doi.org/10.1016/j.trd.2016.02.001

    Article  Google Scholar 

  • Peiyong, N., Xiangli, W., & Shengli, W. (2014). Effects of intake air temperature on si engine emissions during a cold start. International Journal of Sustainable Energy, 33(2), 243–250. https://doi.org/10.1080/14786451.2011.622764

    Article  Google Scholar 

  • Pérez-Martínez, P. J., Miranda, R. M., Nogueira, T., Guardani, M. L., Fornaro, A., Ynoue, R., & Andrade, M. F. (2014). Emission factors of air pollutants from vehicles measured inside road tunnels in São Paulo: case study comparison. International Journal of Environmental Science and Technology, 11, 2155–2168. https://doi.org/10.1007/s13762-014-0562-7

    Article  CAS  Google Scholar 

  • Ramyar, R., Saeedi, S., Bryant, M., Davatgar, A., & Hedjri, G. M. (2020). Ecosystem services mapping for green infrastructure planning–the case of Tehran. The Science of the Total Environment, 703:135466.

  • Shafabakhsh, Gh., Taghizadeh, S. A., & Mehrabi Kooshki, S. (2018). Investigation and sensitivity analysis of air pollution caused by road transportation at signalized intersections using IVE model in Iran. European Transport Research Review, 10, 7. https://doi.org/10.1007/s12544-017-0275-3

  • Shahbazi, H., & Hosseini, V. (2020). Impact of Mobile Source Emission Inventory Adjustment on Air Pollution Photochemical Model Performance. Urban Climate, 32, 100618. https://doi.org/10.1016/j.uclim.2020.100618

  • Shahbazi, H., Reyhanian, M., Hosseini, V., & Afshin, H. (2016). The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an emission inventory approach. Emission Control Science and Technology, 2(1), 44–56. https://doi.org/10.1007/s40825-015-0031-x

    Article  CAS  Google Scholar 

  • Sivacoumar, R., & Jayabalou, R. (2019). Assessment of source contribution to ambient air quality through comprehensive emission inventory, long-term monitoring and deterministic modeling. International Journal of Environmental Science and Technology, 16, 2765–2782.

    Article  CAS  Google Scholar 

  • Taksibi, F., Khajehpour, H., & Saboohi, Y. (2020). On the environmental effectiveness analysis of energy policies: a case study of air pollution in the megacity of Tehran. The Science of the Total Environment, 705, 135824. https://doi.org/10.1016/j.scitotenv.2019.135824

  • Torbatain, S., Ali, H., Hosseini, S., & Vahi, H. (2020). Air pollution in Tehran and their anthropogenic drivers. Atmospheric Pollution Research, 11, 429–442. https://doi.org/10.1016/j.apr.2019.11.015

    Article  CAS  Google Scholar 

  • Tsunemoto, H., & Ishitani, H. (1980). The Role of Oxygen in Intake and Exhaust on NO Emission, Smoke and BMEP of a Diesel Engine with EGR system. SAE paper No 800030.

  • Wu, X., Wu, Y., Zhang, S., Liu, H., Fu, L., & Hao, J. (2016). Assessment of vehicle emission programs in china during 1998–2013: achievement, challenges and implications. Environmental Pollution, 214, 556–567. https://doi.org/10.1016/j.envpol.2016.04.042

    Article  CAS  Google Scholar 

  • Xie, H., Li, L., Chen, T., & Zhao, H. (2014). Investigation on gasoline homogeneous charge compression ignition (HCCI) combustion implemented by residual gas trapping combined with intake preheating through waste heat recovery. Energy Conversion and Management, 86, 8–19. https://doi.org/10.1016/j.enconman.2014.05.022

    Article  CAS  Google Scholar 

  • Zhang, Q., Sun, G., Fang, S., Tian, W., Li, X., & Wang, H. (2013). Air pollutant emissions from vehicles in China under various energy scenarios. The Science of the Total Environment, 450, 250–258. https://doi.org/10.1016/j.scitotenv.2013.01.098

    Article  CAS  Google Scholar 

  • Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., & Yang, X. F., et al. (2014). High-resolution mapping of vehicle emissions in China in 2008. Atmospheric Chemistry and Physics, 14, 9787–9805. https://doi.org/10.5194/acp-14-9787-2014

    Article  CAS  Google Scholar 

  • Zhong, S., Yu, Z., & Zhu, W. (2019). Study of the effects of air pollutants on human health based on baidu indices of disease symptoms and air quality monitoring data in Beijing, China. International Journal of Environmental Science and Technology, 16https://doi.org/10.3390/ijerph16061014

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamideh Heydarzadeh or Saeed Karimi.

Ethics declarations

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydarzadeh, H., Jafari, H. & Karimi, S. Effects of meteorological parameters and fuel composition on the air pollution production from motor vehicles. Environ Monit Assess 194, 236 (2022). https://doi.org/10.1007/s10661-022-09866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09866-0

Keywords

Navigation