Skip to main content
Log in

Occurrence of priority substances in urban wastewaters of Istanbul and the estimation of the associated risks in the effluents

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Increase in the contamination of the aquatic environments is a global challenge; hence, understanding the sources of priority substances (PSs) is essential. In an attempt to implement this principle, a year-long monitoring covering all seasons was carried out in the influents and effluents of four largest wastewater treatment plants (WWTPs) in Istanbul. Results obtained showed the presence of 48 PSs (66% of the target compounds) including pesticides, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), dioxins and dioxin-like compounds (DLCs), alkylphenols, phthalates, and metals ranging from low nanograms to micrograms per liter. Priority hazardous substances that were banned for long were still found to be present in wastewaters. PAHs, DLCs, alkylphenols, and metals were found to be present in all samples. Di(2-ethylhexyl) phthalate (DEHP) and DLCs were detected in more than 80% of the influent samples. Trichloromethane had the highest concentrations among the most frequently (80–100%) detected PSs in the influents and effluents. The potential risks that may arise from WWTP effluents containing PSs were estimated by calculating the risk quotients (RQs). Upon the risk estimation conducted on the PSs in effluents, monitoring of the endrin, alpha-cypermethrin, theta-cypermethrin, zeta-cypermethrin, quinoxyfen, bifenox, benzo-ghi-perylene, and DEHP is recommended for the WWTP effluents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aemig, Q., Hélias, A., & Patureau, D. (2020). Impact assessment of a large panel of organic and inorganic micropollutants released by wastewater treatment plants at the scale of France. Water Research, 188. https://doi.org/10.1016/j.watres.2020.116524

  • Anderson, P., Denslow, N., Olivieri, A., Schlenk, D., & Scott, G.I. (2010). Monitoring strategies for chemicals of emerging concern (CECs) in California’s aquatic ecosystems: final report and recommendations of a science advisory panel. 220.

  • APHA. (2012). Standard methods for the examination of water and wastewater. In E. W. Rice, R. B. Baird, A. D. Eaton, & L. S. Clesceri (Eds.), American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF) (22nd ed.). Washington, D.C., USA.

  • Arvaniti, O. S., & Stasinakis, A. S. (2015). Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Science of the Total Environment, 524–525, 81–92. https://doi.org/10.1016/j.scitotenv.2015.04.023

    Article  CAS  Google Scholar 

  • Atasoy, E., Dögeroglu, T., & Kara, S. (2004). The estimation of NMVOC emissions from an urban-scale wastewater treatment plant. Water Research, 38, 3265–3274. https://doi.org/10.1016/j.watres.2004.04.036

    Article  CAS  Google Scholar 

  • Barco-Bonilla, N., Romero-González, R., Plaza-Bolaños, P., Martínez Vidal, J. L., & Garrido Frenich, A. (2013). Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain). Science of the Total Environment, 447, 381–389. https://doi.org/10.1016/j.scitotenv.2013.01.027

    Article  CAS  Google Scholar 

  • Bari, M. A., & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of the Total Environment, 631–632, 627–640. https://doi.org/10.1016/j.scitotenv.2018.03.023

    Article  CAS  Google Scholar 

  • Bettina, H., Hermann, F., Wolfgang, V., & Mehmet, C. (2011). Effects of chain length, chlorination degree, and structure on the octanol-water partition coefficients of polychlorinated n-alkanes. Environmental Science and Technology, 45, 2842–2849. https://doi.org/10.1021/es103098b

    Article  CAS  Google Scholar 

  • Bilgin Oncu, N., & Akmehmet Balcioglu, I. (2013). Microwave-assisted chemical oxidation of biological waste sludge: Simultaneous micropollutant degradation and sludge solubilization. Bioresource Technology, 146, 126–134. https://doi.org/10.1016/j.biortech.2013.07.043

    Article  CAS  Google Scholar 

  • Bilgin Oncu, N., Mercan, N., & Akmehmet Balcioglu, I. (2015). The impact of ferrous iron/heat-activated persulfate treatment on waste sewage sludge constituents and sorbed antimicrobial micropollutants. Chemical Engineering Journal, 259, 972–980. https://doi.org/10.1016/j.cej.2014.08.066

    Article  CAS  Google Scholar 

  • Bolzonella, D., Fatone, F., Pavan, P., & Cecchi, F. (2010). Poly-chlorinated dibenzo-p-dioxins, dibenzo-furans and dioxin-like poly-chlorinated biphenyls occurrence and removal in conventional and membrane activated sludge processes. Bioresource Technology, 101, 9445–9454. https://doi.org/10.1016/j.biortech.2010.07.067

    Article  CAS  Google Scholar 

  • Boonnorat, J., Kanyatrakul, A., Prakhongsak, A., Honda, R., Panichnumsin, P., & Boonapatcharoen, N. (2019). Effect of hydraulic retention time on micropollutant biodegradation in activated sludge system augmented with acclimatized sludge treating low-micropollutants wastewater. Chemosphere, 230, 606–615. https://doi.org/10.1016/j.chemosphere.2019.05.039

    Article  CAS  Google Scholar 

  • Bueno, M. J. M., Gomez, M. J., Herrera, S., Hernando, M. D., Agüera, A., & Fernández-Alba, A. R. (2012). Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environmental Pollution, 164, 267–273. https://doi.org/10.1016/j.envpol.2012.01.038

    Article  CAS  Google Scholar 

  • Bustos, N., Cruz-Alcalde, A., Iriel, A., Fernández Cirelli, A., & Sans, C. (2019). Sunlight and UVC-254 irradiation induced photodegradation of organophosphorus pesticide dichlorvos in aqueous matrices. Science of the Total Environment, 649, 592–600. https://doi.org/10.1016/j.scitotenv.2018.08.254

    Article  CAS  Google Scholar 

  • Cai, Q. Y., Mo, C. H., Wu, Q. T., Zeng, Q. Y., & Katsoyiannis, A. (2007). Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China. Chemosphere, 68, 1751–1762. https://doi.org/10.1016/j.chemosphere.2007.03.041

    Article  CAS  Google Scholar 

  • Cakirogullari, G. C., & Secer, S. (2011). Seasonal variation of organochlorine contaminants in bonito (Sarda sarda L. 1758) and anchovy (Engraulis encrasicolus L. 1758) in Black Sea region, Turkey. Chemosphere, 85, 1713–1718. https://doi.org/10.1016/j.chemosphere.2011.09.017

    Article  CAS  Google Scholar 

  • Chefetz, B., Bilkis, Y. I., & Polubesova, T. (2004). Sorption–desorption behavior of triazine and phenylurea herbicides in Kishon river sediments. Water Research, 38(20), 4383–4394. https://doi.org/10.1016/j.watres.2004.08.023

    Article  CAS  Google Scholar 

  • Çifci, D. I., Kinaci, C., & Arikan, O. A. (2013). Occurrence of phthalates in sewage sludge from three wastewater treatment plants in Istanbul, Turkey. Clean - Soil, Air, Water, 41, 851–855. https://doi.org/10.1002/clen.201200212

    Article  CAS  Google Scholar 

  • COB. (2006). Regulation on Urban Wastewater Treatment. Turkish Ministry of Environment and Forestry, Official Gazette Dated 04.01.2006, No: 26047, Ankara, Turkey. https://www.resmigazete.gov.tr/eskiler/2006/01/20060108-2.htm

  • COB. (2010). Technical Communication for Wastewater Treatment. Ministry of Environment and Forestry, Official Gazette Dated 20.03.2010, No: 27527, Ankara, Turkey. https://www.resmigazete.gov.tr/eskiler/2010/03/20100320-7.htm

  • Coelhan, M., Strohmeier, J., & Barlas, H. (2006). Organochlorine levels in edible fish from the Marmara Sea, Turkey. Environment International, 32, 775–780. https://doi.org/10.1016/j.envint.2006.03.015

    Article  CAS  Google Scholar 

  • Coggan, T. L., Moodie, D., Kolobaric, A., Szabo, D., Shimeta, J., Crosbie, N. D., Lee, E., Fernandes, M., & Clarke, B. O. (2019). An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon, 5, e02316. https://doi.org/10.1016/j.heliyon.2019.e02316

    Article  Google Scholar 

  • Council. (2013). O.F.T.H.E., 2013. 24.8.2013, 1–17.

  • CSB. (2014). The Persistent Organic Pollutants (POPs) National Implementation Plan Management in Turkey. Turkish Ministry of Environment and Urbanization, Ankara, Turkey. https://webdosya.csb.gov.tr/db/kok/editordosya/2_%20UUP%20Metni_Taslak_Tr.pdf

  • CSB. (2018). Regulation on Persistent Organic Pollutants. Turkish Ministry of Environment and Urbanization, Official Gazette Dated: 14.10.2018, No: 30595, Ankara, Turkey. https://www.resmigazete.gov.tr/eskiler/2018/11/20181114-4.htm

  • CSB&NIRAS. (2015). Technical Sectoral Impact Analysis for the Implementation of the Regulation for Persistent Organic Pollutants in Turkey [WWW Document]. Turkish Minist. Environ. Urban. NIRAS.

  • Dimou, A. D., Sakkas, V. A., & Albanis, T. A. (2004). Trifluralin photolysis in natural waters and under the presence of isolated organic matter and nitrate ions: Kinetics and photoproduct analysis. Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 473–480. https://doi.org/10.1016/j.jphotochem.2004.02.001

    Article  CAS  Google Scholar 

  • Dogruel, S., Cetinkaya Atesci, Z., Aydin, E., & Pehlivanoglu-Mantas, E. (2020). Ozonation in advanced treatment of secondary municipal wastewater effluents for the removal of micropollutants. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10339-5

    Article  Google Scholar 

  • Donner, E., Eriksson, E., Revitt, D. M., Scholes, L., Lützhøft, H. C. H., & Ledin, A. (2010). Presence and fate of priority substances in domestic greywater treatment and reuse systems. Science of the Total Environment, 408, 2444–2451. https://doi.org/10.1016/j.scitotenv.2010.02.033

    Article  CAS  Google Scholar 

  • EC. (1993). Official Journal of the European Communities, EC. https://doi.org/10.1039/AP9842100196

  • EC. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. EU.

  • EC. (2008). Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC,. EU.

  • EC. (2013). Directive 2013/39/EU of the European Parliament and of the Council of of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. EU.

  • ECHA. (2018). Committee for Risk Assessment - ECHA.

  • EP. (2006). Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

  • EPA. (1995). National Primary Drinking Water Regulations Dioxin (2,3,7,8-TCDD).

  • EPA. (2016). Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) – Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) 1–103.

  • Esbah, H., Akyol, M., & Steindl, M. (2014). Urban agriculture: Implications on Istanbul cultural heritage. Journal of Environmental Protection and Ecology, 15(4), 1793–1800.

    Google Scholar 

  • Escher, B., Neale, P., & Leusch, F. (2021). Bioanalytical tools in water quality assessment (2nd ed.). IWA Publishing. https://doi.org/10.2166/9781789061987

  • Fillmann, G., Tolosa, I., Bartocci, J., & Villeneuve, J. P. (2002). Persistent organochlorine residues in sediments from the Black Sea. Marine Pollution Bulletin, 44, 122–133. https://doi.org/10.1016/S0025-326X(01)00188-6

    Article  CAS  Google Scholar 

  • Firouzsalari, N. Z., Shakerkhatibi, M., Pourakbar, M., Yadeghari, A., Safari, G. H., & Sarbakhsh, P. (2019). Pyrethroid pesticide residues in a municipal wastewater treatment plant: Occurrence, removal efficiency, and risk assessment using a modified index. Journal of Water Process Engineering, 29.https://doi.org/10.1016/j.jwpe.2019.100793

  • Fliedner, Lohmann, N., Rüdel, H., Teubner, D., Wellmitz, J., & Koschorreck, J. (2016). Current levels and trends of selected EU Water Framework Directive priority substances in freshwater fish from the German environmental specimen bank. Environmental Pollution, 216, 866–876. https://doi.org/10.1016/j.envpol.2016.06.060

    Article  CAS  Google Scholar 

  • Gaonkar, O., Nambi, I. M., & Suresh Kumar, G. (2019). Biodegradation kinetics of dichlorvos and chlorpyrifos by enriched bacterial cultures from an agricultural soil. Bioremediation Journal, 23, 259–276. https://doi.org/10.1080/10889868.2019.1671791

    Article  CAS  Google Scholar 

  • García-galán, M. J., Monllor-alcaraz, L. S., Postigo, C., Uggetti, E., Alda, M. L. D., García, J., & Díez-montero, R. (2020). Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas. Elsevier Ltd. https://doi.org/10.1016/j.envpol.2020.114579

    Article  Google Scholar 

  • Gasperi, J., Garnaud, S., Rocher, V., & Moilleron, R. (2008). Priority pollutants in wastewater and combined sewer overflow. Science of the Total Environment, 407, 263–272. https://doi.org/10.1016/j.scitotenv.2008.08.015

    Article  CAS  Google Scholar 

  • Gauthier, P. T., Norwood, W. P., Prepas, E. E., & Pyle, G. G. (2014). Metal-PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than-additive outcomes. Aquatic Toxicology, 154, 253–269. https://doi.org/10.1016/j.aquatox.2014.05.026

    Article  CAS  Google Scholar 

  • Giannakis, S., Gamarra Vives, F. A., Grandjean, D., Magnet, A., De Alencastro, L. F., & Pulgarin, C. (2015). Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods. Water Research, 84, 295–306. https://doi.org/10.1016/j.watres.2015.07.030

    Article  CAS  Google Scholar 

  • GTHB. (2017). Technical Instructions on the Integrated Combat for Lentils. Ankara.

  • Guérit, I., Bocquené, G., James, A., Thybaud, E., & Minier, C. (2008). Environmental risk assessment: A critical approach of the European TGD in an in situ application. Ecotoxicology and Environmental Safety, 71, 291–300. https://doi.org/10.1016/j.ecoenv.2008.01.020

    Article  CAS  Google Scholar 

  • Guillossou, R., Le Roux, J., Mailler, R., Vulliet, E., Morlay, C., Nauleau, F., Gasperi, J., & Rocher, V. (2019). Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere, 218, 1050–1060. https://doi.org/10.1016/j.chemosphere.2018.11.182

    Article  CAS  Google Scholar 

  • Hanedar, A., Alp, K., Kaynak, B., Baek, J., Avsar, E., & Odman, M. T. (2011). Concentrations and sources of PAHs at three stations in Istanbul, Turkey. Atmospheric Research, 99, 391–399. https://doi.org/10.1016/j.atmosres.2010.11.017

    Article  CAS  Google Scholar 

  • Hennebel, T., Simoen, H., Verhagen, P., de Windt, W., Dick, J., Weise, C., Pietschner, F., Boon, N., & Verstraete, W. (2011). Biocatalytic dechlorination of hexachlorocyclohexane by immobilized bio-Pd in a pilot scale fluidized bed reactor. Environmental Chemistry Letters, 9, 417–422. https://doi.org/10.1007/s10311-010-0295-x

    Article  CAS  Google Scholar 

  • Hu, X. C., Dassuncao, C., Zhang, X., Grandjean, P., Weihe, P., Webster, G. M., Nielsen, F., & Sunderland, E. M. (2018). Can profiles of poly- and Perfluoroalkyl substances (PFASs) in human serum provide information on major exposure sources? Environmental Health: A Global Access Science Source, 17, 1–16. https://doi.org/10.1186/s12940-018-0355-4

    Article  CAS  Google Scholar 

  • Hu, X. C., Tokranov, A. K., Liddie, J., Zhang, X., Grandjean, P., Hart, J. E., Laden, F., Sun, Q., Yeung, L. W. Y., & Sunderland, E. M. (2019). Tap water contributions to plasma concentrations of poly- and perfluoroalkyl substances (PFAS) in a nationwide prospective cohort of U.S. women. Environmental Health Perspectives, 127, 1–11. https://doi.org/10.1289/EHP4093

    Article  Google Scholar 

  • Huang, B., Lei, C., Wei, C., & Zeng, G. (2014). Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies. Environment International, 71, 118–138. https://doi.org/10.1016/j.envint.2014.06.013

    Article  CAS  Google Scholar 

  • ISKI. (2013). Regulation on discharge of wastewater to sewage (pp. 20–23). Istanbul Water and Sewage Administration. https://www.iski.gov.tr/web/assets/SayfalarDocs/Mevzuat%20ve%20Yönetmelikler/İSKİ%20ATIKSULARIN%20KANALİZASYONA%20DEŞARJ%20YÖNETMELİĞİ-14012019.pdf

  • Kajiwara, N., Noma, Y., Matsukami, H., Tamiya, M., Koyama, T., Terai, T., Koiwa, M., & Sakai, S. (2019). Environmentally sound destruction of hexachlorobutadiene during waste incineration in commercial-and pilot-scale rotary kilns. Journal of Environmental Chemical Engineering, 7, 103464. https://doi.org/10.1016/j.jece.2019.103464

    Article  CAS  Google Scholar 

  • Karacik, B., Okay, O. S., Henkelmann, B., Bernhöft, S., & Schramm, K. W. (2009). Polycyclic aromatic hydrocarbons and effects on marine organisms in the Istanbul Strait. Environment International, 35, 599–606. https://doi.org/10.1016/j.envint.2008.11.005

    Article  CAS  Google Scholar 

  • Karahan, Ö., Olmez-Hanci, T., Arslan-Alaton, I., & Orhon, D. (2010). Modelling biodegradation of nonylphenol ethoxylate in acclimated and non-acclimated microbial cultures. Bioresource Technology, 101, 8058–8066. https://doi.org/10.1016/j.biortech.2010.05.081

    Article  CAS  Google Scholar 

  • Katsoyiannis, A., & Samara, C. (2005). Persistent organic pollutants (POPs) in the conventional activated sludge treatment process: Fate and mass balance. Environmental Research, 97, 245–257. https://doi.org/10.1016/j.envres.2004.09.001

    Article  CAS  Google Scholar 

  • Khan, S., Aijun, L., Zhang, S., Hu, Q., & Zhu, Y. G. (2008). Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials, 152, 506–515. https://doi.org/10.1016/j.jhazmat.2007.07.014

    Article  CAS  Google Scholar 

  • Kobayashi, Y., Peters, G. M., & Khan, S. J. (2015). Towards more holistic environmental impact assessment: Hybridisation of life cycle assessment and quantitative risk assessment. Procedia CIRP, 29, 378–383. https://doi.org/10.1016/j.procir.2015.01.064

    Article  Google Scholar 

  • Kocamemi, B. A., & Çeçen, F. (2010). Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems. Bioresource Technology, 101, 430–433. https://doi.org/10.1016/j.biortech.2009.07.079

    Article  CAS  Google Scholar 

  • Köck-Schulmeyer, M., Villagrasa, M., López de Alda, M., Céspedes-sánchez, R., Ventura, F., Barceló, D., López de Alda, M., Céspedes-sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458–460, 466–476. https://doi.org/10.1016/j.scitotenv.2013.04.010

    Article  CAS  Google Scholar 

  • Kovarova, J., Blahova, J., Divisova, L., & Svobodova, Z. (2013). Alkylphenol ethoxylates and alkylphenols-update information on occurrence, fate and toxicity in aquatic environment. Polish Journal of Veterinary Sciences, 16, 763–772. https://doi.org/10.2478/pjvs-2013-0111

    Article  CAS  Google Scholar 

  • Lee, Y. M., Lee, J. E., Choe, W., Kim, T., Lee, J. Y., Kho, Y., Choi, K., & Zoh, K. D. (2019). Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environment International, 126, 635–643. https://doi.org/10.1016/j.envint.2019.02.059

    Article  CAS  Google Scholar 

  • Leusch, F. D. L., Neale, P. A., Arnal, C., Aneck-Hahn, N. H., Balaguer, P., Bruchet, A., Escher, B. I., Esperanza, M., Grimaldi, M., Leroy, G., Scheurer, M., Schlichting, R., Schriks, M., & Hebert, A. (2018). Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. Water Research, 139, 10–18. https://doi.org/10.1016/j.watres.2018.03.056

    Article  CAS  Google Scholar 

  • Loos, R., Carvalho, R., António, D. C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fick, J., Lindberg, R. H., Schwesig, D., & Gawlik, B. M. (2013). EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 47, 6475–6487. https://doi.org/10.1016/j.watres.2013.08.024

    Article  CAS  Google Scholar 

  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

    Article  CAS  Google Scholar 

  • Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olivé, C., Cartiser, N., Eudes, V., Bressy, A., Caupos, E., Moilleron, R., Chebbo, G., & Rocher, V. (2015). Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Research, 72, 315–330. https://doi.org/10.1016/j.watres.2014.10.047

    Article  CAS  Google Scholar 

  • Margot, J., Kienle, C., Magnet, A., Weil, M., Rossi, L., de Alencastro, L. F., Abegglen, C., Thonney, D., Chèvre, N., Schärer, M., & Barry, D. A. (2013). Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon? Science of the Total Environment, 461–462, 480–498. https://doi.org/10.1016/j.scitotenv.2013.05.034

    Article  CAS  Google Scholar 

  • Martí, N., Aguado, D., Segovia-Martínez, L., Bouzas, A., & Seco, A. (2011). Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain. Marine Pollution Bulletin, 62, 615–625. https://doi.org/10.1016/j.marpolbul.2011.01.010

    Article  CAS  Google Scholar 

  • Martin Ruel, S., Esperanza, M., Choubert, J. M., Valor, I., Budzinski, H., & Coquery, M. (2010). On-site evaluation of the efficiency of conventional and advanced secondary processes for the removal of 60 organic micropollutants. Water Science and Technology, 62, 2970–2978. https://doi.org/10.2166/wst.2010.989

    Article  CAS  Google Scholar 

  • Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., & Rintala, J. A. (2003). Removal of bis(2-ethylhexyl) phthalate at a sewage treatment plant. Water Research, 37, 1385–1393. https://doi.org/10.1016/S0043-1354(02)00486-4

    Article  CAS  Google Scholar 

  • McCallum, E. S., Nikel, K. E., Mehdi, H., Du, S. N. N., Bowman, J. E., Midwood, J. D., Kidd, K. A., Scott, G. R., & Balshine, S. (2019). Municipal wastewater effluent affects fish communities: A multi-year study involving two wastewater treatment plants. Environmental Pollution, 252, 1730–1741. https://doi.org/10.1016/j.envpol.2019.06.075

    Article  CAS  Google Scholar 

  • McLachlan, M. S., Horstmann, M., & Hinkel, M. (1996). Polychlorinated dibenzo-p-dioxins and dibenzofurans in sewage sludge: Sources and fate following sludge application to land. Science of the Total Environment, 185, 109–123. https://doi.org/10.1016/0048-9697(96)05046-2

    Article  CAS  Google Scholar 

  • Meftaul, I., Venkateswarlu, K., Dharmarajan, R., & Annamalai, P. (2020). Pesticides in the urban environment : A potential threat that knocks at the door 711. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.134612

    Article  Google Scholar 

  • Meng, J., Zhou, Y., Liu, S., Chen, S., & Wang, T. (2019). Increasing perfluoroalkyl substances and ecological process from the Yongding Watershed to the Guanting Reservoir in the Olympic host cities, China. Environment International, 133, 105224. https://doi.org/10.1016/j.envint.2019.105224

    Article  CAS  Google Scholar 

  • Mir-Tutusaus, J. A., Baccar, R., Caminal, G., & Sarrà, M. (2018). Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Research, 138, 137–151. https://doi.org/10.1016/j.watres.2018.02.056

    Article  CAS  Google Scholar 

  • Mishra, K., Sharma, R. C., & Kumar, S. (2013). Contamination profile of DDT and HCH in surface sediments and their spatial distribution from North-East India. Ecotoxicology and Environmental Safety, 95, 113–122. https://doi.org/10.1016/j.ecoenv.2013.05.029

    Article  CAS  Google Scholar 

  • Mulvaney, D., Robbins, P., & Downie, D. (2017). Stockholm Convention. Green Polit. An A-to-Z Guid. https://doi.org/10.4135/9781412971867.n117

  • Nas, B., Argun, M. E. E., Dolu, T., Ateş, H., Yel, E., Koyuncu, S., Dinç, S., & Kara, M. (2020). Occurrence, loadings and removal of EU-priority polycyclic aromatic hydrocarbons (PAHs) in wastewater and sludge by advanced biological treatment, stabilization pond and constructed wetland. Journal of Environmental Management, 268(January), 110580. https://doi.org/10.1016/j.jenvman.2020.110580

  • OECD. (2002). Manual for Investigation of HPV Chemicals (October; pp. 1–11). OECD. https://www.oecd.org/chemicalsafety/risk-assessment/2483645.pdf

  • Okay, O. S., Karacik, B., Başak, S., Henkelmann, B., Bernhöft, S., & Schramm, K. W. (2009). PCB and PCDD/F in sediments and mussels of the Istanbul strait (Turkey). Chemosphere, 76, 159–166. https://doi.org/10.1016/j.chemosphere.2009.03.051

    Article  CAS  Google Scholar 

  • Økland, T. E., Wilhelmsen, E., & Solevåg, Ø. (2005a). A study of the priority substances of the Water Framework Directive.

  • Økland, T. E., Wilhelmsen, E., & Solevåg, Ø. (2005b). A study of the priority substances of the Water Framework Directive. Bergfald & Co.

    Google Scholar 

  • Ömeroglu, S., Murdoch, F. K., & Sanin, F. D. (2015). Investigation of nonylphenol and nonylphenol ethoxylates in sewage sludge samples from a metropolitan wastewater treatment plant in Turkey. Talanta, 131, 650–655. https://doi.org/10.1016/j.talanta.2014.08.014

    Article  CAS  Google Scholar 

  • OSIB. (2016). Resmi Gazete Tarihi: 30.11.2012 Resmi Gazete Sayısı: 28483 (29797). Ankara.

  • Ozaki, N., Takamura, Y., Kojima, K., & Kindaichi, T. (2015). Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system. Water Research, 80, 337–345. https://doi.org/10.1016/j.watres.2015.05.002

    Article  CAS  Google Scholar 

  • Ozyildiz, G., Olmez-Hanci, T., & Arslan-Alaton, I. (2019). Effect of nano-scale, reduced graphene oxide on the degradation of bisphenol A in real tertiary treated wastewater with the persulfate/UV-C process. Applied Catalysis b: Environmental, 254, 135–144. https://doi.org/10.1016/j.apcatb.2019.04.092

    Article  CAS  Google Scholar 

  • Pesqueira, J. F. J. R., Pereira, M. F. R., & Silva, A. M. T. (2020). Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review. Journal of Cleaner Production, 261.https://doi.org/10.1016/j.jclepro.2020.121078

  • Preuss, R., Angerer, J., & Drexler, H. (2003). Naphthalene - An environmental and occupational toxicant. International Archives of Occupational and Environmental Health, 76, 556–576. https://doi.org/10.1007/s00420-003-0458-1

    Article  CAS  Google Scholar 

  • PubChem. (2020). PubChem Compound Summary for Pentachlorobenzene.

  • PubChem-Aclonifen. (2020). PubChem Compound Summary for Aclonifen.

  • PubChem-Endrin. (2020). PubChem Compound Summary for Endrin.

  • PubChem-Hexachlorobenzene. (2020). PubChem Compound Summary for Hexachlorobenzene.

  • PubChem-Lindane. (2020). PubChem Compound Summary for Lindane.

  • Qin, Y., Zhang, J., Avellán-Llaguno, R. D., Zhang, X., & Huang, Q. (2021). DEHP-elicited small extracellular vesicles miR-26a-5p promoted metastasis in nearby normal A549 cells. Environmental Pollution, 272.https://doi.org/10.1016/j.envpol.2020.116005

  • Regan, F., et al. (2013). Monitoring of priority substances in waste water efluents. Wexford. https://doi.org/10.13140/2.1.1928.0322

  • Rodríguez, S. M., Gálvez, J. B., Maldonado Rubio, M. I., Ibáñez, P. F., Gernjak, W., & Alberola, I. O. (2005). Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: Influence of operating conditions in a solar pilot plant. Chemosphere, 58, 391–398. https://doi.org/10.1016/j.chemosphere.2004.09.043

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz, S., Ricart, M., Köck-Schulmeyer, M., Guasch, H., Bonnineau, C., Proia, L., de Alda, M. L., Sabater, S., & Barceló, D. (2015). Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant. Journal of Hazardous Materials, 282, 165–173. https://doi.org/10.1016/j.jhazmat.2014.09.015

    Article  CAS  Google Scholar 

  • Rowsell, V. F. (2009). Imperial College London Estimating the Removal of Micropollutants and Emerging Contaminants from Sewage Treatment Processes in Preparation for the Implementation of the Water Framework Directive. Imperial College London.

  • Rowsell, V. F., Tangney, P., Hunt, C., & Voulvoulis, N. (2010). Estimating levels of micropollutants in municipal wastewater. Water, Air, and Soil Pollution, 206, 357–368. https://doi.org/10.1007/s11270-009-0112-y

    Article  CAS  Google Scholar 

  • Rule, K. L., Comber, S. D. W., Ross, D., Thornton, A., Makropoulos, C. K., & Rautiu, R. (2006). Diffuse sources of heavy metals entering an urban wastewater catchment. Chemosphere, 63, 64–72. https://doi.org/10.1016/j.chemosphere.2005.07.052

    Article  CAS  Google Scholar 

  • Sahin, C., & Karpuzcu, M. E. (2020). Mitigation of organophosphate pesticide pollution in agricultural watersheds. Science of the Total Environment, 710, 136261. https://doi.org/10.1016/j.scitotenv.2019.136261

  • Sari, S., Ozdemir, G., Yangin-Gomec, C., Zengin, G. E., Topuz, E., Aydin, E., Pehlivanoglu-Mantas, E., & Okutman Tas, D. (2014). Seasonal variation of diclofenac concentration and its relation with wastewater characteristics at two municipal wastewater treatment plants in Turkey. Journal of Hazardous Materials, 272, 155–164. https://doi.org/10.1016/j.jhazmat.2014.03.015

    Article  CAS  Google Scholar 

  • SCHEER. (2017). Scientific advice on Guidance document n°27: Technical guidance for deriving environmental quality standards, EC. Scientific Committee on Health, Environmental and Emerging Risks (SCHEER).

  • Sousa, J. C. G., Ribeiro, A. R., Barbosa, M. O., Pereira, M. F. R., & Silva, A. M. T. (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 344, 146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058

    Article  CAS  Google Scholar 

  • Stamatis, N., Konstantinou, I., & Hela, D. (2010). Pesticide inputs from the sewage treatment plant of Agrinio to River Acheloos, western Greece: Occurrence and removal. Water Science and Technology, 62, 1098–1105. https://doi.org/10.2166/wst.2010.932

    Article  CAS  Google Scholar 

  • Tang, W., Wang, D., Wang, J., Wu, Z., Li, L., Huang, M., Xu, S., & Yan, D. (2018). Pyrethroid pesticide residues in the global environment: An overview. Chemosphere, 191, 990–1007. https://doi.org/10.1016/j.chemosphere.2017.10.115

    Article  CAS  Google Scholar 

  • Taşkin, Ö. S., Aksu, A., & Balkis, N. (2011). Metal (Al, Fe, Mn and Cu) distributions and origins of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of the Marmara Sea and the coast of Istanbul, Turkey. Marine Pollution Bulletin, 62, 2568–2570. https://doi.org/10.1016/j.marpolbul.2011.08.013

    Article  CAS  Google Scholar 

  • Tchobanoglous, et al. (2004). Wastewater engineering, treatment and reuse, in. ed. (4th ed). McGraw-Hill, New York: Metcalf and Eddy.

  • Thomaidi, V. S., Stasinakis, A. S., Borova, V. L., & Thomaidis, N. S. (2015). Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study. Journal of Hazardous Materials, 283, 740–747. https://doi.org/10.1016/j.jhazmat.2014.10.023

    Article  CAS  Google Scholar 

  • TOB. (2015). Database of plant protection products [WWW Document]. Dep. Plant Prot. Prod. Turkish Minist. Agric. For. Ankara. https://bku.tarim.gov.tr/AktifMadde/Details/153. Accessed 2 March 2021.

  • TOB. (2020). Active ingredient list of banned plant protection products [WWW Document]. Dir. Phitosanitary Serv. Turkish Minist. Agric. For. Ankara. https://www.tarimorman.gov.tr/Konu/934/Yasaklanan-Bitki-Koruma-Urunleri-Aktif-Madde-Listesi. Accessed 8 January 2021.

  • Topuz, E., Sari, S., Ozdemir, G., Aydin, E., Pehlivanoglu-Mantas, E., & Okutman Tas, D. (2014). Optimization of diclofenac quantification from wastewater treatment plant sludge by ultrasonication assisted extraction. Journal of Chromatography: B, Analytical Technologies in the Biomedical and Life Sciences, 958, 48–54. https://doi.org/10.1016/j.jchromb.2014.02.047

    Article  CAS  Google Scholar 

  • Urana, R., Dahiya, A., Singh, N., & Sharma, P. (2020). A review on rhizoremediation: Plant-microbe interaction enhances the degradation of polyaromatic hydrocarbons, microbial services in restoration ecology. Elsevier Inc. https://doi.org/10.1016/b978-0-12-819978-7.00019-1

  • van de Plassche, E., Schwegler, A., Rasenberg, M., & Schouten, G. (2020). Pentachlorobenzene (pp. 1–19). The Netherlands: Royal Haskoning, UNECE.

  • Vijgen, J., Abhilash, P. C., Li, Y. F., Lal, R., Forter, M., Torres, J., Singh, N., Yunus, M., Tian, C., Schäffer, A., & Weber, R. (2011). Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers. Environmental Science and Pollution Research, 18, 152–162. https://doi.org/10.1007/s11356-010-0417-9

    Article  CAS  Google Scholar 

  • Wang, W., Qu, X., Lin, D., & Yang, K. (2021). Octanol-water partition coefficient (logKow) dependent movement and time lagging of polycyclic aromatic hydrocarbons (PAHs) from emission sources to lake sediments: A case study of Taihu Lake. China. Environmental Pollution, 288, 117709. https://doi.org/10.1016/j.envpol.2021.117709

  • Wang, Y., Gao, W., Wang, Y., & Jiang, G. (2019). Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF MS during wastewater treatment processes. Journal of Hazardous Materials, 376, 153–159. https://doi.org/10.1016/j.jhazmat.2019.05.031

    Article  CAS  Google Scholar 

  • WHO. (2010). Exposure to dioxins and dioxin-like substances: A major public health concern. What are dioxins and dioxin-like substances? Derivation of toxic equivalency factors (TEFs).

  • Wolff, D., Krah, D., Dötsch, A., Ghattas, A. K., Wick, A., & Ternes, T. A. (2018). Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems. Water Research, 143, 313–324. https://doi.org/10.1016/j.watres.2018.06.033

    Article  CAS  Google Scholar 

  • Wu, M., Wang, L., Xu, H., & Ding, Y. (2013). Occurrence and removal efficiency of six polycyclic aromatic hydrocarbons in different wastewater treatment plants. Water Science and Technology, 68(8), 1844–1851. https://doi.org/10.2166/wst.2013.433

    Article  CAS  Google Scholar 

  • Yangin-Gomec, C., Olmez-Hanci, T., Arslan-Alaton, I., Khoei, S., & Fakhri, H. (2018). Iopamidol degradation with ZVI- and ZVA-activated chemical oxidation: Investigation of toxicity, anaerobic inhibition and microbial communities. Journal of Environmental Chemical Engineering, 6, 7318–7326. https://doi.org/10.1016/j.jece.2018.09.028

    Article  CAS  Google Scholar 

  • Yilmaz, G., Kaya, Y., Vergili, I., Beril Gönder, Z., Özhan, G., Ozbek Celik, B., Altinkum, S. M., Bagdatli, Y., Boergers, A., & Tuerk, J. (2017). Characterization and toxicity of hospital wastewaters in Turkey. Environmental Monitoring and Assessment, 189.https://doi.org/10.1007/s10661-016-5732-2

  • Zhou, Y., Meng, J., Zhang, M., Chen, S., He, B., Zhao, H., Li, Q., Zhang, S., & Wang, T. (2019). Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants? Environment International, 131.https://doi.org/10.1016/j.envint.2019.104982

Download references

Acknowledgements

The authors would like to thank the Department of Wastewater and the Central Laboratory of ISKI for their technical support and their active participation in sampling campaigns and analyses. The authors would also like to express their gratitude and appreciation to Mrs. Elmas Öktem (TÜBİTAK) for her collaboration in gathering and providing data on the methods of PSs analyses; to Dr. Kartal Çetinturk (SEM GROUP) for his valuable discussions and technical support on the instrumental analyses’ methodology as well as in the completion of the said section; to Mr. Ensar Başakın, M.S. and Ms. Elif Kartal, M.S. (both of Department of Civil Engineering, Istanbul Technical University) for their valuable contribution in the visualization of the material; to Prof. Abdulbari Bener (Department of Biostatistics & Medical Informatics, Cerrahpaşa Faculty of Medicine, Istanbul University), to Dr. Hanife Nur Orak (Department of Environmental Engineering, Marmara University), to Dr. Bekir Dizman (Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence, Sabancı University), to Prof. Heidi Gough (School of Environmental and Forest Sciences, University of Washington) for their technical assistances, and finally, to Prof. Glen D. Lawrence (Department of Chemistry and Biochemistry, Long Island University) for his valuable comments on the manuscript.

Funding

This work was supported by the ISKI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahime Iclal Birtek.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Forty-eight PSs out of 73 were detected in the urban wastewaters in Istanbul.

• Priority hazardous substances that were banned for long are still present in wastewaters.

• Trichloromethane had the highest concentrations among detected PSs.

• PAHs, DLCs, alkylphenols, and metals were present in all samples.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 304 KB)

Supplementary file2 (DOCX 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birtek, R.I., Karpuzcu, M.E. & Ozturk, I. Occurrence of priority substances in urban wastewaters of Istanbul and the estimation of the associated risks in the effluents. Environ Monit Assess 194, 426 (2022). https://doi.org/10.1007/s10661-022-09840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09840-w

Keywords

Navigation