Skip to main content
Log in

Feasibility of calcium alginate beads to preconcentrate lead in river water samples prior to determination by flame atomic absorption spectrometry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lead (Pb) is a potentially toxic element with significant environmental interest. Simple and sensitive analytical methods are necessary to allow determination of this element at trace levels using sample preparation procedures related to green chemistry. For this, calcium alginate beads (CA-beads), a low-cost and environmentally friendly biopolymer, have been proposed for extraction and preconcentration of Pb2+ in river water samples and determination by flame atomic absorption spectrometry (FAAS). CA-beads were prepared and applied to extract and preconcentrate Pb2+ in river water samples, providing an enrichment factor (EF) of 50, enhancement factor (E) of 54, a detection limit of 2 μg L−1, and a relative standard deviation < 5%. The extraction of Pb2+ in CA-beads achieved good selectivity, with recoveries from 94.8 to 100.2% in real samples, demonstrating the good accuracy of the proposed method. The results were also compared to those obtained by ICP-MS. The reuse of CA-beads was evaluated for six cycles, and under these conditions, the extraction and preconcentration efficiency of Pb2+ were not significantly affected. The developed methodology was applied to determine Pb2+ in water samples from rivers that are part of the hydrographic areas of Tibagi and Pitangui Rivers, in which the Pb2+ concentration was less than 2 μg L−1, a concentration lower than that established by Brazilian legislation for class I and II rivers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An, B., Son, H., Chung, J., Choi, J. W., Lee, S. H., & Hong, S. W. (2013). Calcium and hydrogen effects during sorption of copper onto an alginate-based ion exchanger: Batch and fixed-bed column studies. Chemical Engineering Journal, 232, 51–58

    Article  CAS  Google Scholar 

  • Baghban, N., Yilmaz, E., & Soylak, M. (2017). Nanodiamond/MoS2 nanorod composite as a novel sorbent for fast and effective vortex-assisted micro solid phase extraction of lead(II) and copper(II) for their flame atomic absorption spectrometric detection. Journal of Molecular Liquids, 234, 260–267

    Article  CAS  Google Scholar 

  • Bai, H., Zhou, Q., Xie, G., & Xiao, J. (2010). Temperature-controlled ionic liquid-liquid-phase microextraction for the pre-concentration of lead from environmental samples prior to flame atomic absorption spectrometry. Talanta, 80, 1638–1642

    Article  CAS  Google Scholar 

  • Behbahani, M., Hassanlou, P. G., Amini, M. M., Omidi, F., & Esrafili., Farzadkia, M., Bagheri, A. (2015). Application of solvent-assisted dispersive solid phase extraction as a new, fast, simple and reliable preconcentration and trace detection of lead and cadmium ions in fruit and water samples. Food Chemistry, 187, 82–88

    Article  CAS  Google Scholar 

  • Blanchet-Chouinard, G., & Larivière, D. (2018). Determination of Pb in environmental samples after cloud point extraction using crown ether. Talanta, 179, 300–306

    Article  CAS  Google Scholar 

  • Carvalho, G. G. A., Kondaveeti, S., Petri, D. F. S., Fioroto, A. M., Albuquerque, L. G. R., & Oliveira, P. V. (2016). Evaluation of calcium alginate beads for Ce, La and Nd preconcentration from groundwater prior to ICP OES analysis. Talanta, 161, 707–712

    Article  CAS  Google Scholar 

  • Cataldo, S., Gianguzza, A., Merli, M., Muratore, N., Piazze, D., & Liveri, M. L. T. (2014). Experimental and robust modeling approach for lead (II) uptake by alginate gel beads: Influence of the ionic strength and medium composition. Journal of Colloid and Interface Science, 434, 77–88

    Article  CAS  Google Scholar 

  • Chaduka, M., Guyo, U., Zinyama, N. P., Tshuma, P., & Matsinha, L. C. (2020). Modeling and optimization of lead (II) adsorption by a novel peanut hull-g-methyl methacrylate biopolymer using response surface methodology (RSM). Analytical Letters, 53, 1294–1311

    Article  CAS  Google Scholar 

  • Chiew, C. S. C., Yeoh, H. K., Pasbakhsh, P., Poh, P. E., Tey, B. T., & Chan, E. S. (2016). Stability and reusability of alginate-based adsorbents for repetitive lead (II) removal. Polymer Degradation and Stabilility, 123, 146–154

    Article  CAS  Google Scholar 

  • CONAMA (Conselho Nacional do Meio Ambiente). (2005). Resolução No 357. Ministério do Meio Ambiente, MMA. Brasília. Distrito Federal. http://www.mma.gov.br. (Accessed 02 July 2020).

  • Daşbaşı, T., Saçmacı, Ş, Ülgen, A., & Kartal, S. (2015). Determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry. Food Chemistry, 174, 591–596

    Article  CAS  Google Scholar 

  • da Silva Fernandes, R., de Moura, M. R., Glenn, G. M., & Aouada, F. A. (2018). Thermal microstructural and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. Journal of Molecular Liquids, 265, 327–336. https://doi.org/10.1016/j.molliq.2018.06.005

  • Guo, Y., Zhao, H., Han, Y., Liu, X., Guan, S., Zhang, Q., & Bian, X. (2017). Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 173, 532–536

    Article  CAS  Google Scholar 

  • Hajiaghababaei, L., Badiei, A., Ganjali, M. R., Heydari, S., Khaniani, Y., & Ziarani, G. M. (2011). Highly efficient removal and preconcentration of lead and cadmium cations from water and wastewater samples using ethylenediamine functionalized SBA-15. Desalination, 266, 182–187

    Article  CAS  Google Scholar 

  • Hua, S., Ma, H., Li, X., Yang, H., & Wang, A. (2010). pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. International Journal of Biological Macromolecules, 46(5), 517–523. https://doi.org/10.1016/j.ijbiomac.2010.03.004

  • Huang, S., Xiao, Z., Zhai, S., Zhai, B., Zhang, F., & An, Q. (2014). Fabrication of highly-stable Ag/CA@GTA hydrogel beads and their catalytic application. Royal Society of Chemistry Advances, 4, 60460–60466

    Article  CAS  Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatística). (2018) Área territorial brasileira, Rio de Janeiro, IBGE

  • Jalbani, N., & Soylak, M. (2015). Preconcentration/separation of lead at trace level from water samples by mixed micelle cloud point extraction. Journal of Industrial and Engineering Chemistry, 29, 48–51

    Article  CAS  Google Scholar 

  • Kamboh, M. A., Ibrahim, W. A. W., Nodeh, H. R., Zardari, L. A., & Sanagi, M. M. (2019). Fabrication of calixarene-grafted magnetic nanocomposite for the effective removal of lead(II) from aqueous solution. Environmental Technology, 40, 2482–2493

    Article  CAS  Google Scholar 

  • Kardar, Z. S., Beyki, M. H., & Shemirani, F. (2016). Takovite-aluminsilicate@MnFeO4 nanocomposite, a novel magnetic adsorbent for efficient preconcentration of lead ions in food samples. Food Chemistry, 209, 241–247

    Article  CAS  Google Scholar 

  • Krawczyk, M., & Stanisz, E. (2016). Ultrasound-assisted dispersive micro solid-phase extraction with nano-TiO2 as adsorbent for the determination of Mercury species. Talanta, 161, 384–391

    Article  CAS  Google Scholar 

  • Lagoa, R., & Rodrigues, Jr. (2007). Evaluation of dry protonated calcium alginate beads for biosorption applications and studies of lead uptake. Applied Biochemistry and Biotechnology, 143, 115–128

    Article  CAS  Google Scholar 

  • Lai, Y., Annadurai, G., Huang, F., & Lee, J. (2008). Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresource Technology, 99, 6480–6487

    Article  CAS  Google Scholar 

  • Li, Z., Tang, J., & Pan, J. (2004). The determination of lead in preserved food by spectrophotometry with dibromohydroxyphenylporphyrin. Food Control, 15(7), 565–570

    Article  CAS  Google Scholar 

  • Li, Y. K., Li, W. T., Liu, X., Yang, T., Chen, M. L., & Wang, J. H. (2019). Functionalized magnetic composites based on the aptamer serve as novel bio-adsorbent for the separation and preconcentration of trace lead. Talanta, 203, 210–219

    Article  CAS  Google Scholar 

  • Lorêdo de França, M., Separovic, L., Longo Junior, L. S., Oliveira, D. C., Lourenço, F. R., Calixto, L. A. (2021). Determining uncertainty in a simple UV–Vis spectrometry method employing dimethyl carbonate as green solvent for lead determination in water. Measurement, 173

  • Maratta, A., Vásquez, S., López, A., Auguso, M., & Pacheco, P. H. (2016). Lead preconcentration by solid phase extraction using oxidized carbon xerogel and spectrophotometric determination with dithizone. Microchemical Journal, 128, 166–171

    Article  CAS  Google Scholar 

  • Mariussen, E., Heierb, L. S., Teien, H. C., Pettersen, M. N., Holth, T. F., Salbu, B., & Rosseland, B. O. (2017). Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range. Ecotoxicology and Environmental Safety, 135, 327–336

    Article  CAS  Google Scholar 

  • Mirghani, M., Al-Mubaiyedh, U. A., Nasser, M. S., & Shawabkeh, R. (2015). Experimental study and modeling of photocatalytic reduction of Pb2+ by WO3/TiO2 nanoparticles. Separation and Purification Technology, 14, 285–293

    Article  CAS  Google Scholar 

  • Mousa, N. E., Simonescu, C. M., Pǎtescu, R., Onose, C., Tardei, C., Culițǎ, D. C., Oprea, O., Patroi, D., & Lavric, V. (2016). Pb+2 removal from aqueous synthetic solution by calcium alginate and chitosan coated calcium alginate. Reactive & Functional Polymers, 109, 137–150

    Article  CAS  Google Scholar 

  • Peters, F. T., Drummer, O. H., & Musshoff, F. (2007). Validation of new methods. Forensic Science International, 165, 216–224

    Article  CAS  Google Scholar 

  • Ren, H., Gao, Z., Wu, D., Jiang, J., Sun, Y., & Luo, C. (2016). Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate Polymers, 137, 402–409

    Article  CAS  Google Scholar 

  • Saçmacı, Ş, & Saçmacı, M. (2020). The rapid determination of lead in food samples by magnetic dispersive solid-phase extraction coupled zeta potential analyzer. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1784885

    Article  Google Scholar 

  • Saracoglu, S., Soylak, M., Peker, D. S. K., Elci, L., Santos, W. N. L., Lemos, V. A., & Ferreira, S. L. C. (2006). A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry. Analytica Chimica Acta, 575, 133–137.

    Article  CAS  Google Scholar 

  • Satarpi, T., Shiowatana, J., & Siripinyanound, A. (2016). Paper-based analytical device for sampling on-site preconcentration and detection of ppb lead in water. Talanta, 154, 504–510.

    Article  CAS  Google Scholar 

  • SEMA (Secretaria de Estado do Meio Ambiente e Recursos Hidrícos). (2010). Bacias Hidrográficas do Paraná – Série Histórica. Curitiba, 75–78

  • Sereshti, H., Heravi, Y. E., & Samadi, S. (2012). Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES. Talanta, 97, 235–241

    Article  CAS  Google Scholar 

  • Shamsipur, M., Ramezani, M., & Sadeghi, M. (2009). Preconcentration and determination of ultra-trace amounts of palladium in water samples by dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. Microchimica Acta, 166, 235–242

    Article  CAS  Google Scholar 

  • Silva, E. L., & Roldan, P. S. (2009). Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry. Journal of Hazardous Materials, 161, 142–147

    Article  CAS  Google Scholar 

  • Smichowski, P., & Londonio, A. (2020). A retrospective and prospective of the use of bio- and nanomaterials for preconcentration, speciation, and determination of trace elements: A review spanning 25 years of research. Analytical and Bioanalytical Chemistry, 10, 1007–1021

    Google Scholar 

  • Simonescu, P. M., Mason, T. J., Călinescu, I., Lavric, V., Vînătoru, M., Melinescu, A., Culiţă, D. C. (2020). Ultrasound assisted preparation of calcium alginate beads to improve absorption of Pb+2 from water. Ultrasonic Sonochemistry68, 105191

  • Tahtat, D., Bouaicha, M. N., Benamer, S., Nacer-Khodja, A., & Mahlous, M. (2017). Development of alginate gel beads with a potential use in the treatment against acute lead poisoning. International Journal of Biological Macromolecules, 105, 1010–1016

    Article  CAS  Google Scholar 

  • Taverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC-Trends in Analytical Chemistry, 23, 535–552

    Article  CAS  Google Scholar 

  • Tokalioğlu, Ş, Papak, A., & Kartal, Ş. (2017). Separation/preconcentration of trace Pb(II) and Cr(II) with 2-mercaptobenzothiazole impregnated Amberlite XAD-1180 resin and their determination by flame atomic absorption spectrometry. Arabian Journal of Chemistry, 10, 19–23

    Article  CAS  Google Scholar 

  • Uslu, H., Büyükpinar, Ç., Unutkan, T., Serbest, H., San, N., Turak, F., & Bakirdere, S. (2018). A novel analytical method for sensitive determination of lead: Hydrogen assisted T-shape slotted quartz tube-atom trap-flame atomic absorption spectrometry. Microchemical Journal, 137, 155–159

    Article  CAS  Google Scholar 

  • Verma, R., Asthama, A., Singh, A. K., Prasad, S., & Susan, M. A. B. H. (2017). Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead. Microchemical Journal, 130, 168–178

    Article  CAS  Google Scholar 

  • Wang, J., Yang, Q., Zhang, L., Liu, M., Hu, N., Zhang, W., Zhu, W., Wang, R., Suo, Y., & Wang, J. (2018). A hybrid monolithic column based on layered double hydroxide-alginate hydrogel for selective solid phase extraction of lead ions in food and water samples. Food Chemistry, 257, 155–162

    Article  CAS  Google Scholar 

  • Wang, Z., Wu, S., Zhang, Y., Miao, L., Zhang, Y., & Wu, A. (2020). Preparation of modified sodium alginate aerogel and its application in removing lead and cadmium ions in wastewater. International Journal of Biological Macromolecules, 157, 687–694.

    Article  CAS  Google Scholar 

  • Wouthuyzen, S., Herandarudewi, S. M. C., & Komatsu, T. (2016). Stock assessment of brown seaweeds (Phaeophyceae) along the Bitung-Bentena Coast, North Sulawesi Province, Indonesia for alginate product using satellite remote sensing. Procedia Environmental Sciences, 33, 553–561

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support. K.B.F have scholarship from CNPq and E.S.C. has a research scholarship from CNPq.

Funding

This study received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo S. Chaves.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Beik, J., Fontana, K.B., Medeiros, D.C.C.S. et al. Feasibility of calcium alginate beads to preconcentrate lead in river water samples prior to determination by flame atomic absorption spectrometry. Environ Monit Assess 193, 666 (2021). https://doi.org/10.1007/s10661-021-09453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09453-9

Keywords

Navigation