Skip to main content

Advertisement

Log in

A comparison of XRFS and ICP-OES methods for soil trace metal analyses in a mining impacted agricultural watershed

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Field portable X-ray fluorescence spectroscopy (XRFS) has become increasingly prevalent for in situ detection of trace metals, as it is both rapid and cost effective. The accuracy of in situ XRFS analyses has been questioned due to possible interferences from elevated soil moisture and organic content. In this study, three metal analysis protocols (Cd, Pb, Zn) were compared for surface soil samples collected near the Tar Creek Superfund Site in northeastern Oklahoma. The protocols included the use of a field portable XRF spectrometer for in situ analyses and on homogenized, pulverized, air-dried soil samples sieved to < 250-µm fraction in the laboratory. A subset of soil samples was also analyzed after microwave-assisted hot HNO3 digestion followed by inductively coupled plasma-optical emission spectrometry (ICP-OES) analyses. Moisture content and loss-on-ignition (as a surrogate for organic matter) were determined for each sample. Soil moisture exceeding 10% in situ caused underreporting of field XRF readings when compared to the laboratory XRF readings. Relationships between concentrations determined by laboratory XRFS and ICP-OES for Pb (r2 = 0.96) and Zn (r2 = 0.91) were not statistically different (p < 0.025 for both analytes). A strong relationship between ICP-OES analyses of Zn and Cd (r2 = 0.93) allowed prediction of Cd concentrations for additional samples not analyzed by ICP-OES. This study recommends that XRFS field readings be used for initial screening only and that samples analyzed via field portable XRFS be homogenized, air dried, sieved and re-analyzed in the laboratory to yield the most accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alloway, B. J. (2012). Heavy metals in soils (3rd ed.). Springer.

  • Andrews, W. J. (2011). Plant uptake, time trends, and natural attenuation of selected metals in an abandoned mining district / by William James Andrews. [Thesis PhD--University of Oklahoma]. http://libraries.ou.edu/access.aspx?url=http://wwwlib.umi.com/dissertations/fullcit/3449545

  • Ankenbauer, K. J., & Loheide, S. P. (2017). The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada. CA. Hydrological Processes, 31(4), 891–901. https://doi.org/10.1002/hyp.11070

    Article  Google Scholar 

  • ASTDR. (2005). Toxicological profile for zinc. (p. 352). United States Department of Health and Human Services.

  • ASTM. (2016). Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass, Method D2216–10.

  • Bastos, R. O., Melquiades, F. L., & Biasi, G. E. V. (2012). Correction for the effect of soil moisture on in situ XRF analysis using low-energy background. X-Ray Spectrometry, 41(5), 304–307. https://doi.org/10.1002/xrs.2397

    Article  CAS  Google Scholar 

  • Bettinelli, M., Beone, G. M., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424(2), 289–296. https://doi.org/10.1016/S0003-2670(00)01123-5

    Article  CAS  Google Scholar 

  • Binstock, D. A., & Gutknecht, W. F. (2002). Final report for research to develop a cost-effective approach to residential soil-lead risk assessment. (HUD Cooperative agreement NCLH R0055-99).

  • Binstock, D. A., Gutknecht, W. F., & McWilliams, A. C. (2008). Lead in soil by field‐portable x‐ray fluorescence spectrometry—an examination of paired and laboratory ICP‐AES results. Remediation Journal 18(3):55–61.

  • Congiu, A., Perucchini, S., & Cesti, P. (2013). Trace metal contaminants in sediments and soils: Comparison between ICP and XRF quantitative determination. E3S Web of Conferences, 1, 09004.

  • Coronel, E. G., Bair, D. A., Brown, C. T., & Terry, R. E. (2014). Utility and limitations of portable X-ray fluorescence and field laboratory conditions on the geochemical analysis of soils and floors at areas of known human activities. Soil Science, 179(5), 258–271. https://doi.org/10.1097/SS.0000000000000067

    Article  CAS  Google Scholar 

  • Crooks, V., Simpson, P., Rawson, B., & Waked, D. (2006). Investigation of PXRF procedures for measuring contaminated land. Health and Safety Laboratory, 102, 1–49.

    Google Scholar 

  • Datin, D. L., & Cates, D. A. (2002). Sampling and metal analysis of chat piles in the Tar Creek Superfund Site. Oklahoma Department of Environmental Qualty.

  • Dean, W. E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sediment Petrology, 44(1), 242–248.

  • Gałuszka, A., Migaszewski, Z. M., & Namieśnik, J. (2015). Moving your laboratories to the field – Advantages and limitations of the use of field portable instruments in environmental sample analysis. Environmental Research, 140, 593–603. https://doi.org/10.1016/j.envres.2015.05.017

    Article  CAS  Google Scholar 

  • Ge, L., Lai, W., & Lin, Y. (2005). Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis. X-Ray Spectrometry, 34(1), 28–34. https://doi.org/10.1002/xrs.782

    Article  CAS  Google Scholar 

  • Giacalone, A., Gianguzza, A., Orecchio, S., Piazzese, D., Dongarrà, G., Sciarrino, S., & Varrica, D. (2005). Metals distribution in the organic and inorganic fractions of soil: A case study on soils from Sicily. Chemical Speciation & Bioavailability, 17(3), 83–93. https://doi.org/10.3184/095422905782774892

    Article  CAS  Google Scholar 

  • Gupta, S. C., & Larson, W. E. (1979). Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research, 15(6), 1633–1635. https://doi.org/10.1029/WR015i006p01633

    Article  Google Scholar 

  • Higueras, P., Oyarzun, R., Iraizoz, J. M., Lorenzo, S., Esbrí, J. M., & Martínez-Coronado, A. (2012). Low-cost geochemical surveys for environmental studies in developing countries: Testing a field portable XRF instrument under quasi-realistic conditions. Journal of Geochemical Exploration, 113, 3–12. https://doi.org/10.1016/j.gexplo.2011.02.005

    Article  CAS  Google Scholar 

  • John, D. A., & Leventhal, J. S. (1995). Bioavailability of metals. U.S. Geology Survey Open File Report 95-831.

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). CRC Press LLC.

  • Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83(1), 93–122. https://doi.org/10.1016/S0304-3894(00)00330-7

    Article  CAS  Google Scholar 

  • Kido, Y., Koshikawa, T., & Tada, R. (2006). Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF microscanner. Marine Geology, 229(3), 209–225. https://doi.org/10.1016/j.margeo.2006.03.002

    Article  CAS  Google Scholar 

  • Kilbride, C., Poole, J., & Hutchings, T. R. (2006). A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP–OES and ex situ field portable X-ray fluorescence analyses. Environmental Pollution, 143(1), 16–23. https://doi.org/10.1016/j.envpol.2005.11.013

    Article  CAS  Google Scholar 

  • Lewin, J., & Macklin, M. G. (1987). Metal mining and floodplain sedimentation in Britain. International Geomorphology, 1009–1027.

  • Lin, J. (2009). Performance of the Thermo Scientific Niton XRF Analyzer: The effects of particle size, length of analysis, water, organic matter, and soil chemistry. [Master’s Thesis]. University of California, Berkeley, California.

  • Löwemark, L., Chen, H.-F., Yang, T.-N., Kylander, M., Yu, E.-F., Hsu, Y.-W., Lee, T.-Q., Song, S.-R., & Jarvis, S. (2011). Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40(6), 1250–1256. https://doi.org/10.1016/j.jseaes.2010.06.002

    Article  Google Scholar 

  • Maxfield, R. (2000). A community based environmental lead assessment and remediation program. 2000 National Lead Grantee Conference, Atlanta, GA.

  • McComb, J. Q., Rogers, C., Han, F. X., & Tchounwou, P. B. (2014). Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, a comparative study. Water, Air, & Soil Pollution, 225(12), 2169. https://doi.org/10.1007/s11270-014-2169-5

    Article  CAS  Google Scholar 

  • Melquiades, F. L., & Appoloni, C. R. (2004). Application of XRF and field portable XRF for environmental analysis. Journal of Radioanalytical and Nuclear Chemistry, 262(2), 533–541. https://doi.org/10.1023/B:JRNC.0000046792.52385.b2

    Article  CAS  Google Scholar 

  • Miller, J. R. (1997). The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. Journal of Geochemical Exploration, 58(2), 101–118. https://doi.org/10.1016/S0375-6742(96)00073-8

    Article  CAS  Google Scholar 

  • Potts, P. J., & West, M. (2008). Portable X-ray fluorescence spectrometry: Capabilities for in situ analysis. RSC Pub.

  • Pyle, S. M., Nocerino, J. M., Deming, S. N., Palasota, J. A., Palasota, J. M., Miller, E. L., Hillman, D. C., Kuharic, C. A., Cole, W. H., Fitzpatrick, P. M., Watson, M. A., & Nichols, K. D. (1996). Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil. Environmental Science & Technology, 30(1), 204–213. https://doi.org/10.1021/es9502482

    Article  CAS  Google Scholar 

  • Ravansari, R., & Lemke, L. D. (2018). Portable X-ray fluorescence trace metal measurement in organic rich soils: PXRF response as a function of organic matter fraction. Geoderma, 319, 175–184. https://doi.org/10.1016/j.geoderma.2018.01.011

    Article  CAS  Google Scholar 

  • Reames, G., & Lance, L. L. (2002). Childhood lead poisoning investigators: Evaluating a portable instrument for testing soil lead. Journal of Environmental Health, 64(8), 9–13.

    CAS  Google Scholar 

  • Rouillon, M., & Taylor, M. P. (2016). Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Environmental Pollution, 214, 255–264. https://doi.org/10.1016/j.envpol.2016.03.055

    Article  CAS  Google Scholar 

  • Sahraoui, H., & Hachicha, M. (2016). Determination of trace elements in mine soil samples using portable X-ray fluorescence spectrometer: A comparative study with ICO-OES. KKU Engineering Journal, 43(3), 1–5.

    Google Scholar 

  • Sahraoui, H., & Hachicha, M. (2017). Effects of soil moisture on trace elements concentrations using portable X-ray fluorescence spectrometer. Journal of Fundamental and Applied Sciences, 9(1), 468–484.

    Article  Google Scholar 

  • Schaider, L. A., Senn, D. B., Estes, E. R., Brabander, D. J., & Shine, J. P. (2014). Sources and fates of heavy metals in a mining-impacted stream: Temporal variability and the role of iron oxides. Science of The Total Environment, 490, 456–466. https://doi.org/10.1016/j.scitotenv.2014.04.126

    Article  CAS  Google Scholar 

  • Schneider, A. R., Cancès, B., Breton, C., Ponthieu, M., Morvan, X., Conreux, A., & Marin, B. (2016). Comparison of field portable XRF and aqua regia/ICPAES soil analysis and evaluation of soil moisture influence on FPXRF results. Journal of Soils and Sediments, 16(2), 438–448. https://doi.org/10.1007/s11368-015-1252-x

    Article  CAS  Google Scholar 

  • Shand, C. A., & Wendler, R. (2014). Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter. Journal of Geochemical Exploration, 143, 31–42. https://doi.org/10.1016/j.gexplo.2014.03.005

    Article  CAS  Google Scholar 

  • Taha, K. (2017). Heavy elements analyses in the soil using X-ray fluorescence and inductively coupled plasma-atomic emission spectroscopy. International Journal of Advances in Science Engineering, and Technology, 5(1), 118–120.

    Google Scholar 

  • Thermo Scientific. (2010). Thermo Scientific Niton XRF Analyzers- Environmental hazards testing pamphlet. Thermo Fisher Scientific Inc.

  • Tidball, R. R. (1976). Lead in the environment: Lead in soils. (US Geological Survey Professional Paper, 43-53.). US Geological Survey.

  • Turer, D. G., & Maynard, B. J. (2003). Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility. Clean Technologies and Environmental Policy, 4(4), 235–245.

  • USEPA. (1997). Record of Decision, Operable Unit 2, Residential areas, Tar Creek Superfund Site, Ottawa County, Oklahoma. (p. 166). United States Environmental Protection Agency.

  • USEPA. (2007a). Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment: Method 6200. United States Environmental Protection Agency.

  • USEPA. (2007b). Microwave assisted acid digestion of sediments, sludges, soils, and oils: Method 3051a. United States Environmental Protection Agency.

  • USEPA. (2007c). Inductively coupled plasma-atomic emission spectrometry: Method 6010c. United States Environmental Protection Agency.

  • USEPA. (2008). Record of Decision, Operable Unit 4, Chat piles, other mine and mill waste and smelter waste, Tar Creek Superfund Site, Ottawa County, Oklahoma (No. OKD980629844; p. 161). United States Environmental Protection Agency.

  • USFWS. (2013). Tri-State transition zone assessment study, Kansas, Missouri and Oklahoma (p. 53). Prepared by U.S. Fish and Wildlife Service Oklahoma Ecological Services Field Office, Tulsa, Oklahoma.

  • Walling, D. E., & Owens, P. N. (2003). The role of overbank floodplain sedimentation in catchment contaminant budgets. Hydrobiologia, 494(1), 83–91. https://doi.org/10.1023/A:1025489526364

    Article  Google Scholar 

  • White, R. (2006). Revegetation of abandoned Pb-Zn tailings impoundments with native tall grass prairie vegetation. University of Oklahoma.

  • Wilson, P., Cooke, M., Cawley, J., Giles, L., & West, M. (1995). Comparison of the determination of copper, nickel and zinc in contaminated soils by x-ray fluorescence spectrometry and inductively coupled plasma spectrometry. X-Ray Spectrometry, 24(3), 103–108. https://doi.org/10.1002/xrs.1300240305

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Grand River Dam Authority (grant number GRDA08272015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amy L. Sikora, Robert W. Nairn or Robert C. Knox.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikora, A.L., Maguire, L.W., Nairn, R.W. et al. A comparison of XRFS and ICP-OES methods for soil trace metal analyses in a mining impacted agricultural watershed. Environ Monit Assess 193, 490 (2021). https://doi.org/10.1007/s10661-021-09275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09275-9

Keywords

Navigation