Skip to main content

Advertisement

Log in

Persistence of marine heat waves for coral bleaching and their spectral characteristics around Andaman coral reef

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Coral reefs are fragile and endangered ecosystems in the tropical marine and coastal environment. Thermal stress due to marine heat waves (MHW) could cause significantly negative impacts on the health conditions, i.e., bleaching of the coral ecosystem. The current study is an attempt to quantify the intensity of coral bleaching in the Andaman region in recent decades using the intensity of marine heat wave (IMHW) estimated from satellite measured sea surface temperature (SST). A linear regression model was developed between IMHW and in situ observations of percent coral bleaching (PCB) which has the slope 7.767 (of IMHW unit) and intercept (− 141.7). Further, an attempt was also made to establish the relationship between PCB and the ratio between the remote sensing reflectance (Rrs) at 443 and 531 nm to upscale the percentage of coral bleaching at synoptic scales. A significant positive correlation between the PCB and band ratio index was found (R2 = 0.72). This approach can be used for the operational monitoring of coral reef beaching in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Alexander, J. F., Tracy, D. A., Scott, F. H., & William, L. (2019). Marine heatwave hotspots in coral reef environments: Physical drivers, ecophysiological outcomes, and impact upon structural complexity. Frontiers in Marine Science, 6(498), 2296–7745. https://doi.org/10.3389/fmars.2019.00498

    Article  Google Scholar 

  • Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale D. A., Straub S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Gupta, A. S., Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227–238, ISSN 0079–6611.

  • Banzon, V., Smith, T. M., Chin, T. M., Liu, C., & Hankins, W. (2016). A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth System Science Data, 8, 165–176. https://doi.org/10.5194/essd-8-165-2016

    Article  Google Scholar 

  • Bernal, M. A., Schunter, C., Lehmann, R., Lightfoot, D. J., Allan, B. J. M., Veilleux, H. D., Rummer, J. L., Munday, P. L., & Ravasi, L. (2020). Species-specific molecular responses of wild coral reef fishes during a marine heat wave. Science Advance, 6, 3423.

    Google Scholar 

  • Call, K. A., Hardy, J. T., & Wallin, D. O. (2003). Coral reef habitat discrimination using multivariate spectral analysis and satellite remote sensing. International Journal of Remote Sensing, 24(13), 2627–2639. https://doi.org/10.1080/0143116031000066990

    Article  Google Scholar 

  • Cesar, H., Burke, L. and Pet-Soede, L. (2003). The economics of worldwide coral reef degradation. Cesar Environmental Economics Consulting and WWF-Netherlands, Arnhem and Zeist, The Netherlands, 24.

  • Costanza, R., Arge, R., Groot, R. D., Farberk, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., Neill, R. V. O., Paruelo, J., Raskin, R. G., Suttonkk, P., & Belt, M. V. D. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253–260. https://doi.org/10.1038/387253a0

    Article  CAS  Google Scholar 

  • De, K., Venkataraman, K., & Ingole, B. (2017). Current status and scope of coral reef research in India: A bio-ecological perspective. Indian Journal of Geo-Marine Sciences, 46(4), 647–662.

    Google Scholar 

  • Downs, C. A., Fauth, J. E., Halas, J. C., Dustan, P., Bemiss, J., & Woodley, C. M. (2002). Oxidative stress and seasonal coral bleaching. Free Radical Biology and Medicine, 33(4), 533–543.

    Article  CAS  Google Scholar 

  • Glynn, P. W. (1996). Coral reef bleaching: Facts, hypotheses and implications. Global Change Biology. https://doi.org/10.1111/j.1365-2486.1996.tb00063.x

    Article  Google Scholar 

  • Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D., Straub, S., Oliver, E. C. J., Oliver, Benthuysen, J., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N.J., Moore, P. J., Scannell, H. A., Gupta, A. S., Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227-238. https://doi.org/10.1016/j.pocean.2015.12.014.

  • Hochberg, E. J., Atkinson, M. J., & Andréfouët, S. (2003). Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sensing of Environment, 85(2), 159–173. https://doi.org/10.1016/S0034-4257(02)00201-8

    Article  Google Scholar 

  • Holden, H., & Ledrew, E. (1999). Hyperspectral identification of coral reef features. International Journal of Remote Sensing, 20(13), 2545–2563. https://doi.org/10.1080/014311699211921

    Article  Google Scholar 

  • Ixchel, C. A., Alejandra, A. L, Omar, T. F., & Sergio, C. (2012). Satellite remote sensing of coral reef habitats mapping in shallow waters at Banco Chinchorro Reefs, México: A classification approach, remote sensing - applications, Dr. Boris Escalante (Ed.), ISBN: 978–953–51–0651–7, InTech, Available from: http://www.intechopen.com/books/remote-sensingapplications/satellite-remote-sensing-for-coral-reef-habitat-mapping-in-shallow-waters-at-banco-chinchorro-re.

  • James, M., Crabbe, C. (2008). Climate change, global warming and coral reefs: Modelling the effects of temperature. Computational Biology and Chemistry, 32(5), 311–314, ISSN 1476–9271. https://doi.org/10.1016/j.compbiolchem.2008.04.001.

  • Koushik, S.. & Raghunathan, C. (2012). Study on coral bleaching (2010) in middle Andaman, Andaman and Nicobar Islands. Record Zoological Survey India, 112(part-3), 27–34, ISSN 0375–1511.

  • Krishnan, P., Purvaja, R., Sreeraj, C. R., Raghuraman, R., Robin, R. S., Abhilash, K. R., Mahendra, R. S., Anand, A., Gopi, M., Mohanty, P. C., Venkataraman, K., & Ramesh, R. (2018). Differential bleaching patterns in corals of Palk Bay and the Gulf of Mannar. Current Science, 114(3), 679–685.

    Article  Google Scholar 

  • Krishnan, P., Dam Roy, S., George, G., Srivastava, R. C., Anand, A., Murugesan, S., Kaliyamoorthy, M., Vikas, N., & Soundararajan, R. (2011). Elevated sea surface temperature during May 2010 induces mass bleaching of corals in the Andaman. Current Science, 100(1), 111–117.

    Google Scholar 

  • Lowe, J. A., Huntingford, C., Raper, C. B., Jones, C. D., Liddicoat, S. K., Gohar, L., & K. . (2009). How difficult is it to recover from dangerous levels of global warming? Environmental Research Letters, 4, 014012. https://doi.org/10.1088/1748-9326/4/1/014012

    Article  CAS  Google Scholar 

  • Lubin, D., Li, W., Dustan, P., Mazel, C. H., & Stamnes, K. (2001). Spectral signatures of coral reefs: Features from space. Remote Sensing of Environment, 75(1), 127–137. https://doi.org/10.1016/S0034-4257(00)00161-9

    Article  Google Scholar 

  • Mann, K.H. (1982). Ecology of coastal waters: A system approach. Studies on Ecology, 8, 160e182.

  • Marimuthu, N., Yogesh Kumar, J. S., Raghunathan, C., Vinithkumar, N. V., Kirubagaran, R., Sivakumar, K., & Venkataraman, K. (2017). North-south gradient of incidence, distribution and variations of coral reef communities in the Andaman and Nicobar Islands. India. Journal of Coastal Conservation, 21(2), 289–301. https://doi.org/10.1007/s11852-017-0500-1

    Article  Google Scholar 

  • Mohanty, P. C., Mahendra, R. S., Bisoyi, H., Srinivasa, K. T., George, G., Nayak, S., & Sahu, B. K. (2013). Assessment of the coral bleaching during 2005 to decipher the thermal stress in the coral environs of the Andaman Islands using Remote Sensing. European Journal of Remote Sensing, 46, 417–430. https://doi.org/10.5721/EuJRS20134624

    Article  Google Scholar 

  • Mohanty, P. C., Venkateshwaran, P., Mahendra, R. S., Shiva, K. H., Srinivasa, K. T., Vinithkumar, N. V., Kirubagaran, R., Ramesh, S., Ramesh, R., Sathianarayanan, D., Prakash, V. D., Ramadass, G. A., & Shenoi, S. S. C. (2017). Coral bleaching along Andaman coast due to thermal stress during summer months of 2016: A geospatial assessment. American Journal of Environmental Protection, 6(1), 1–6. https://doi.org/10.11648/j.ajep.20170601.11

    Article  CAS  Google Scholar 

  • Pearce, A. F., & Feng, M. (2013). The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010 / 2011. Journal of Marine Systems, 111–112, 139–156. https://doi.org/10.1016/j.jmarsys.2012.10.009

    Article  Google Scholar 

  • Ravindran, J., Raghukumar, C., & Raghukumar, S. (1999). Disease and stress-induced mortality of corals in Indian reefs and observations on bleaching of corals in the Andamans. Curr Sci., 76, 233–237.

    Google Scholar 

  • Reaser, J. K., Pomerance, R., & Thomas, P. O. (2008). Society for Conservation Biology Coral Bleaching and Global Climate Change. Scientific Findings and Policy Recommendations, 14(5), 1500–1511.

    Google Scholar 

  • Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. (2007). Daily high-resolution blended analyses for sea surface temperature. Journal of Climate, 20, 5473–5496. https://doi.org/10.1175/JCLI-D-14-00293.1

    Article  Google Scholar 

  • Roy, S. D., Sreeraj, C. R. and George, G. (2008). Polychaete infestation on porite corals in the Andaman Sea. Journal of the Marine Biological Association of India, 50(2), 224 - 227, July - December 2008.

  • Sammarco, P. W. (2008). Crises on coral reefs and in coral reefscience in the 21st century: The need for a new peer-review system. Ethics Science Environmental Politics, 8(2), 109–119.

    Article  Google Scholar 

  • Scannell, H. A., A. J. Pershing, M. A. Alexander, A. C. Thomas, and K. E. Mills (2016). Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophysical Research Letter, 43 https://doi.org/10.1002/2015GL067308

  • Spalding, M. D., Ravilious, C., & Green, E. P. (2001). World atlas of coral reefs, UNEP World Conservation Monitoring Centre (p. 424). Univ. of California Press.

    Google Scholar 

  • William, P. L., Emma, F. C., David, J. S., Scott, F. H., Alexander, J. F., Stephanie, G., Lachlan, D., Michael, T., Levi, J. B., Unnikrishnan, K., Eakin, C. M., & Tracy, D. A. (2019). Rapid coral decay is associated with marine heatwave mortality events on reefs. Current Biology, 29(16), 2723–2730.

    Article  Google Scholar 

  • Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J. and Zinke, J. (2017). Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean. Nature Scientific report, 1–10. https://doi.org/10.1038/s41598-017-02688-y

Download references

Acknowledgements

The authors would like to thank the NASA Jet Propulsion Laboratory for providing the AVHRR Oceans Pathfinder SST data through the Physical Oceanography Distributed Active Archive Center (PODAAC) and MODISA for providing open source Rrs data. Thanks to the Director of INCOIS for his encouragement. We also thank the Pacific Marine Environmental Laboratory for making FERRET Software available and Python on open source domain for data process, visualization and analysis. Sincere thanks to anonymous reviewers whose comments/suggestions helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Mahendra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• This study is establishing an empirical relation between percentage of coral bleaching with Intensity Marine Heat Wave (IMHW) and spectral signature of bleached coral environs. This relation is enhancing the capability of detecting the intensity thermal induced coral bleaching on spatio-temporal scales. This approach can be adopted routine coral bleaching monitoring program required for the coastal zone management.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, P.C., Kushabaha, A., Mahendra, R.S. et al. Persistence of marine heat waves for coral bleaching and their spectral characteristics around Andaman coral reef. Environ Monit Assess 193, 491 (2021). https://doi.org/10.1007/s10661-021-09264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09264-y

Keywords

Navigation