Skip to main content

Advertisement

Log in

Chemical, physical, and biological attributes in soils affected by deposition of iron ore tailings from the Fundão Dam failure

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Monitoring degraded areas is essential for evaluation of the quality of the rehabilitation process. In this study, we evaluate how the physical and chemical characteristics of the mixture of iron ore tailings with the soil have affected the soil microbial biomass and activity in areas along the Gualaxo do Norte River after the Fundão Dam disaster. Composite soil samples were collected from areas that were impacted (I) and not impacted (NI) by the tailings. The following attributes were evaluated: chemical element content; soil density, porosity, and texture; microbial biomass carbon; basal respiration; and enzyme activity and density of microbial groups (bacteria, actinobacteria, fungi, arbuscular mycorrhizae, phosphate solubilizers, cellulolytic microorganisms, nitrifiers, ammonifiers, and diazotrophs). According to result, the deposition of tailings increased the pH and the soil available P, Cr, Fe, and Mn content and reduced organic matter. The physical and biological attributes were negatively affected, with increases in the silt content and density of the soil, and reduction in macroporosity and in the microbial biomass and activity of the soil (respiration and enzymes) in the impacted area. However, the impacted areas exhibited greater densities of some microbial groups (cellulolytic microorganisms, nitrifiers, and diazotrophic bacteria). Modifications in the organic matter and silt content are the main attributes associated with deposition of the tailings that affected soil microbial biomass and microbial activity. This may affect erosive conditions and the functionality of the ecosystem, indicating an imbalance in this environment. In contrast, the higher density of some microbial groups in the impacted areas show the high rehabilitation potential of these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abrahão, W. A. P., & Marques, J. J. (2013). Manual de coleta de solos para valores de referência de qualidade no estado de Minas Gerais. Belo Horizonte.

  • Aguilar, N. C., Faria, M. C. S., Pedron, T., Batista, B. L., Mesquita, J. P., Bomfeti, C. A., & Rodrigues, J. L. (2020). Isolation and characterization of bacteria from a Brazilian gold mining area with a capacity of arsenic bioaccumulation. Chemosphere, 240, 124871. https://doi.org/10.1016/j.chemosphere.2019.124871

    Article  CAS  Google Scholar 

  • Alef, K. (1995). Estimation of soil respiration. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 464–470). Academic.

    Google Scholar 

  • Almeida, C. A., Oliveira, A. F., Pacheco, A. A., Lopes, R. P., Neves, A. A., & Queiroz, M. E. L. R. (2018). Characterization and evaluation of sorption potential of the iron mine waste after Samarco dam disaster in Doce River basin e Brazil. Chemosphere, 209, 411–420. https://doi.org/10.1016/j.chemosphere.2018.06.071

    Article  CAS  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Alvarez, V. H., & Fonseca, D. M. (1990). Definição de doses de fósforo para determinação da capacidade máxima de adsorção de fosfatos e para ensaios de casa de vegetação. Revista Brasileira De Ciência Do Solo, 14, 49–55.

    Google Scholar 

  • Anderson, T. H., & Domsch, K. H. (1993). The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such pH, on the microbial biomass of forest soil. Soil Biology and Biochemistry, 25, 393–395.

    Article  Google Scholar 

  • Andrade, G. F., Paniz, F. P., Martins, A. C., Jr., Rocha, B. A., Lobato, A. K. S., Rodrigues, J. L., Cardoso-Gustavson, P., Masuda, H. P., & Batista, B. L. (2018). Agricultural use of Samarco’s spilled mud assessed by rice cultivation: A promising residue use? Chemosphere, 193, 892–902. https://doi.org/10.1016/j.chemosphere.2017.11.099

    Article  CAS  Google Scholar 

  • Baião, É. E., Santos, C. H. B., Santos, A. H., Marques, G., Lima, J. C., Rigobelo, E. C., & Scotti, M. R. (2021). High C-and N-based soil fertility and microbial associations sustain the plant biodiversity of the campo rupestre in Brazil. Geoderma Regional, 25, e00401. https://doi.org/10.1016/j.geodrs.2021.e00401

    Article  Google Scholar 

  • Batista, É. R., Carneiro, J. J., Pinto, F. A., Santos, J. V., & Carneiro, M. A. C. (2020). Environmental drivers of shifts on microbial traits in sites disturbed by a large-scale tailing dam collapse. Science of the Total Environment, 139453. https://doi.org/10.1016/j.scitotenv.2020.139453

  • Blake, G. R., & Hartge, K. H. (1986). Bulk Density. In: A. Klute (Eds.). Methods of soil analysis: Physical and Mineralogical Methods. Part 1. (pp. 363–375) Madison: American Society of Agronomy.

  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making analysis of soils. Agronomy Journal, 43, 433–437. https://doi.org/10.2134/agronj1951.00021962004300090005x

    Article  Google Scholar 

  • Cordeiro, M. C., Garcia, G. D., Rocha, A. M., Tschoeke, D. A., Campeão, M. E., Appolinario, L. R., Soares, A. C., Leomil, L., Froes, A., Bahiense, L., Rezende, C. E., Almeida, M. G., Rangel, T. P., Oliveira, B. C. V., Almeida, D. Q. R., Thompson, M. C., Thompson, C. C., & Thompson, F. L. (2019). Insights on the freshwater microbiomes metabolic changes associated with the world’s largest mining disaster. Science of the Total Environment, 654, 1209–1217. https://doi.org/10.1016/j.scitotenv.2018.11.112

    Article  CAS  Google Scholar 

  • Conselho Nacional do Meio Ambiente - CONAMA. (2009). Resolução CONAMA n° 420, de 28 de dezembro de 2009: Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília, DF. Available online at: http://www.mma.gov.br/port/conama/res/res09/res42009.pdf

  • Couto, F. R., Ferreira, A. M., Pontes, P. P., & Marques, A. R. (2021). Physical, chemical and microbiological characterization of the soils contaminated by iron ore tailing mud after Fundão Dam disaster in Brazil. Applied Soil Ecology, 158, 103811. https://doi.org/10.1016/j.apsoil.2020.103811

    Article  Google Scholar 

  • Danielson, R. E., & Sutherland, P. L. (1986). Porosity. In: A. Klute (Ed.). Methods of soil analysis: Physical and mineralogical methods. 2.ed. (pp.443–461). Madison, American Society of Agronomy; Soil Science Society of America.

  • Davila, R. B., Fontes, M. P. F., Pacheco, A. A., & Ferreira, M. S. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.136151

    Article  Google Scholar 

  • Dias Junior, H. E., Moreira, F. M. S., Siqueira, J. O., & Silva, R. (1998). Metais pesados, densidade e atividade microbiana em solo contaminado por rejeitos de indústria de zinco. Revista Brasileira De Ciência Do Solo, 22, 631–640.

    Article  CAS  Google Scholar 

  • Dick, R. P., Breakwell, D. P., & Turco, R. F. (1996). Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: J.W., Doran, & A.J. Jones (Eds.) Methods for assessing soil quality (pp 247–272). Soil Sci Soc Am Journal, Madison.

  • Döbereiner, J., Baldani, V. L. D., & Baldani, J. I. (1995). Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Itaguaí: EMBRAPA-CNPAB.

  • Duarte, E. B., Neves, M. A., de Oliveira, F. B., Martins, M. E., de Oliveira, C. H. R., Burak, D. L., Orlando, M. T. D., & Rangel, C. V. G. T. (2021). Trace metals in Rio Doce sediments before and after the collapse of the Fundão iron ore tailing dam Southeastern Brazil. Chemosphere, 262, 127879. https://doi.org/10.1016/j.chemosphere.2020.127879

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20, 601–606.

    Article  CAS  Google Scholar 

  • Espindola, H. S., Campos, R. B. F., Lamounier, K. C. C., & Silva, R. S. (2016). Desastre da Samarco no Brasil: Desafios para a conservação da biodiversidade. Fronteiras: Journal of Social. Technological and Environmental Science., 5, 72–100.

    Google Scholar 

  • Ferreira, D. F. (2014). Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38, 109–112.

    Article  Google Scholar 

  • Ferreira, G. W. D., Ribeiro, B. T., Weindorf, D. C., Teixeira, B. I., Chakraborty, S., Li, B., Guilherme, L. R. G., & Scolforo, J. R. S. (2021). Assessment of iron-rich tailings via portable X-ray fluorescence spectrometry: The Mariana dam disaster, southeast Brazil. Environmental Monitoring and Assessment, 193, 203. https://doi.org/10.1007/s10661-021-08982-7

    Article  CAS  Google Scholar 

  • Gabriel, F. A., Silva, A. G., Queiroz, H. M., Ferreira, T. O., Hauser‐Davis, R. A., & Bernardino, A. F. (2020). Ecological risks of metal and metalloid contamination in the Rio Doce Estuary. Integrated Environmental Assessment and Management, 1–6. https://doi.org/10.1002/ieam.4250

  • Gastauer, M., Caldeira, C. F., Ramos, S. J., Silva, D. F., & Siqueira, J. O. (2020). Active rehabilitation of Amazonian sand mines converges soils, plant communities and environmental status to their predisturbance levels. Land Degradation & Development, 31, 607–618. https://doi.org/10.1002/ldr.3475

    Article  Google Scholar 

  • Guerra, M. B. B., Teaney, B. T., Mount, B. J., Asunskis, D. J., Jordan, B. T., Barker, R. J., Santos, E. E., & Schaefer, C. E. G. R. (2017). Post-catastrophe analysis of the Fundão tailings dam failure in the Doce River system, Southeast Brazil: Potentially toxic elements in affected soils. Water, Air, & Soil Pollution, 228, 252. https://doi.org/10.1007/s11270-017-3430-5

    Article  CAS  Google Scholar 

  • Guevara, Y. Z. C., De Souza, J. J. L. L., Veloso, G. V., Veloso, R. W., Rocha, P. A., Abrahão, W. A. P., & Filho, E. I. F. (2018). Reference values of soil quality for the Rio Doce Basin. Revista Brasileira De Ciencia Do Solo, 42, 1–16. https://doi.org/10.1590/18069657rbcs20170231

    Article  CAS  Google Scholar 

  • Hatje, V., Pedreira, R. M., Rezende, C. E., Schettini, C. A. F., Souza, G. C., Marin, D. C., & Hackspacher, P. C. (2017). The environmental impacts of one of the largest tailing dam failures worldwide. Scientific Reports, 7, 10706. https://doi.org/10.1038/s41598-017-11143-x

    Article  CAS  Google Scholar 

  • Henne, A., Craw, D., Gagen, E. J., & Southam, G. (2019). Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil. Science of the Total Environment, 680, 91–104. https://doi.org/10.1016/j.scitotenv.2019.04.448

    Article  CAS  Google Scholar 

  • Hoeft, R. G., Walsh, L. M., & Keeney, D. R. (1973). Evaluation of various extractants for available sulfur. Soil Science Society of America Proceedings, 37, 401–404. https://doi.org/10.2136/sssaj1973.03615995003700030027x

    Article  CAS  Google Scholar 

  • Klute, A. (1986). Water retention: Laboratory method. In: A. Klute (Ed.) Methods of soil analysis: Physical and mineralogical methods. 2.ed. (pp 635- 660) Madison, American Society of Agronomy; Soil Science Society of America.

  • Knopff, K., Bede, L. C., Arruda, L., Alves, T., & Simons, B. (2020). Methods for post‐disaster impact assessment: A case study of the impacts of the Fundão dam failure on terrestrial species threatened with extinction. Integrated Environmental Assessment and Management, 1–5. https://doi.org/10.1002/ieam.4265

  • Lorch, H. J., Benckienser, G., & Ottow, J. C. G. (1995). Basic methods for counting microorganisms in soil and water In: K. Alef, & P. Nannipieri (ed). Methods in applied soil microbiology and biochemistry. (pp146–162). Academic Press, London.

  • Magalhães, F. M. M., & Döbereiner, J. (1984). Ocorrência de Azospirillum amazonense em alguns ecossistemas da Amazônia. Revista De Microbiologia, 15, 246–252.

    Google Scholar 

  • Martin, J. P. (1950). Use of acids rose-bengall and streptomicin in the plate method for estimating soil fungi. Soil Science., 134, 215–232.

    Article  Google Scholar 

  • Matias, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Carneiro, A. A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45, 259–266. https://doi.org/10.1016/j.ejsobi.2009.02.003

    Article  CAS  Google Scholar 

  • Matos, L. P., Andrade, H. M., Marinato, C. S., Prado, I. G. O., Coelho, D. G., Montoya, S. G., Kasuya, M. C. M, & Oliveira, J. A. (2020). Limitations to use of Cassia grandis L. in the revegetation of the areas impacted with mining tailings from Fundão Dam. Water, Air, & Soil Pollution. 231, 127. https://doi.org/10.1007/s11270-020-04479-0

  • Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4 by North Carolina Soil Testing Laboratories. University of North Carolina.

    Google Scholar 

  • Moreira, F. M. S., Ferreira, P. A. A., Vilela, L. A. F., & Carneiro, M. A. C. (2015). Symbioses of Plants with rhizobia and mycorrhizal fungi in heavy metal-contaminated tropical soils. In: I. Sherameti, A. Varma, (Eds.) Heavy Metal Contamination of Soils. Soil Biology, v. 44. Springer. https://doi.org/10.1007/978-3-319-14526-6_12

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. T., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). Vegan: Community Ecology Package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan

  • Pinto, J. V. E., Santos, J. V., Oliveira-Longatti, S. M., Santos, B., & Moreira, F. M. S. (2020). Species of associative N2-fixing bacteria in phytophysiognomies of the Quadrilátero ferrífero, MG, Brazil. Revista de Recursos Genéticos - RG News 6 – Sociedade Brasileira de Recursos Genéticos.

  • Prado, I. G. O., Silva, M. C. S., Prado, D. G. O., Kemmelmeier, K., Pedrosa, B. G., Silva, C. C., & Kasuya, M. C. M. (2019). Revegetation process increases the diversity of total and arbuscular mycorrhizal fungi in areas affected by the Fundão dam failure in Mariana, Brazil. Applied Soil Ecology, 141, 84–95. https://doi.org/10.1016/j.apsoil.2019.05.008

    Article  Google Scholar 

  • Quadra, G. R., Roland, F., Barros, N., Malm, O., Lino, A. S., Azevedo, G. M., Thomaz, J. R., Andrade-Vieira, L. F., Praça-Fontes, M., Almeida, R. M., Mendonça, R. F., Cardoso, S. J., Guida, Y. S., & Campos, J. M. S. (2018). Far-reaching cytogenotoxic effects of mine waste from the Fundão dam disaster in Brazil. Chemosphere, 215, 753–757. https://doi.org/10.1016/j.chemosphere.2018.10.104

    Article  CAS  Google Scholar 

  • Queiroz, H. M., Nóbrega, G. N., Ferreira, T. O., Almeida, L. S., Romero, T. B., Santaella, S. T., Bernardino, A. F., & Otero, X. L. (2018). The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination? Science of the Total Environment, 637–638, 498–506. https://doi.org/10.1016/j.scitotenv.2018.04.370

    Article  CAS  Google Scholar 

  • Queiroz, H. M., Ying, S. C., Abernathy, M., Barcellos, D., Gabriel, F. A., Otero, X. L., Nóbrega, G. N., Bernardino, A. F., & Ferreira, T. O. (2021a). Manganese: The overlooked contaminant in the world largest mine tailings dam collapse. Environment International, 146, 106284. https://doi.org/10.1016/j.envint.2020.106284

  • Queiroz, H. M., Ying, S. C., Bernardino, A. F., Barcellos, D., Nóbrega, G. N., Otero, X. L., & Ferreira, T. O. (2021b). Role of Fe dynamic in release of metals at Rio Doce estuary: Unfolding of a mining disaster. Marine Pollution Bulletin, 166, 112267. https://doi.org/10.1016/j.marpolbul.2021.112267

  • R Development Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online at https://www.R-project.org/

  • Rangel, W. M., Oliveira-Longatti, S. M., Ferreira, P. A. A., Bonaldi, D. S., Guimarães, A. A., Thijs, S., Weyens, N., Vangronsveld, J., & Moreira, F. M. S. (2017). Leguminosae native nodulating bacteria from a gold mine As-contaminated soil: Multi-resistance to trace elements, and possible role in plant growth and mineral nutrition. International Journal of Phytoremediation, 19, 925–936. https://doi.org/10.1080/15226514.2017.1303812

    Article  CAS  Google Scholar 

  • Remigio, A. C., Chaney, R. L., Baker, A. J. M., Edraki, M., Erskine, P. D., Echevarria, G., & van der Ent, A. (2020). Phytoextraction of high value elements and contaminants from mining and mineral wastes: Opportunities and limitations. Plant and Soil, 449, 11–37. https://doi.org/10.1007/s11104-020-04487-3

    Article  CAS  Google Scholar 

  • Ribeiro Junior, A. C. R., Silva, A. O., Batista, E. R., Naves, F. S., Pinto, F. A., Santos, J. V., Barbosa, M. V., Alvarenga, I. F. S., & Carneiro, M. A. C. (2021). Biochemical attributes and establishment of tree seedlings in soil after Urochloa decumbens cultivation in soil with deposition of iron mining residues. Cerne, 27, e-102535. https://doi.org/10.1590/01047760202127012623.

  • Renova (2018). Monitoramento das intervenções prioritárias: Relatório de resultado do primeiro ano de monitoramento. Fundação Renova, Belo Horizonte, MG. https://www.fundacaorenova.org

  • Santos, J. V., Varón-López, M., Soares, C. R. F. S., Leal, P. L., Siqueira, J. O., & Moreira, F. M. S. (2016). Biological attributes of rehabilitated soils contaminated with heavy metals. Environmental Science and Pollution Research, 23, 6735. https://doi.org/10.1007/s11356-015-5904-6

    Article  CAS  Google Scholar 

  • Santos, O. S. H., Avellar, F. C., Alves, M., Trindade, R. C., Menezes, M. B., Ferreira, M. C., França, G. S., Cordeiro, J., Sobreira, F. G., Yoshida, I. M., Moura, P. M., Baptista, M. B., & Scotti, M. R. (2019). Understanding the Environmental Impact of a Mine Dam Rupture in Brazil: Prospects for Remediation. Journal of Environmental Quality, 48, 439–449. https://doi.org/10.2134/jeq2018.04.0168

    Article  CAS  Google Scholar 

  • Sarathchandra, U. (1978). Nitrification activities and the changes in the populations of nitrifying bacteria in soil perfused at two different H-ion concentrations. Plant and Soil, 50, 99–111.

    Article  CAS  Google Scholar 

  • Schmidt, E. L., & Belser, L. W. (1982). Nitrifying bacteria In: A.L. Page, R.H. Miller, & D.R. Keeney (Eds.), Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. Second Edition. Soil Science Society of America. USA.

  • Segura, F. R., Nunes, E. A., Paniz, F. P., Paulelli, A. C. C., Rodrigues, G. B., Braga, G. U. L., Pedreira Filho, W. R., Barbosa, F., Cerchiaro, G., Silva, F. F. F. F., & Batista, B. L. (2016). Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813–825. https://doi.org/10.1016/j.envpol.2016.08.005

    Article  CAS  Google Scholar 

  • Shoemaker, W. R., Locey, K. J., & Lennon, J. T. (2017). A macroecological theory of microbial biodiversity. Nature Ecology & Evolution, 1, 0107. https://doi.org/10.1038/s41559-017-0107

    Article  Google Scholar 

  • Silva, A. O., Costa, A. M., Teixeira, A. F. S., Guimarães, A. A., Santos, J. V., & Moreira, F. M. S. (2018). Soil microbiological attributes indicate recovery of an iron mining area and of the biological quality of adjacent phytophysiognomies. Ecological Indicators, 93, 142–151. https://doi.org/10.1016/j.ecolind.2018.04.073

    Article  CAS  Google Scholar 

  • Silva, A .O., Guimarães, A. A., Costa, A. M., Rodrigues, T. L., Carvalho, T. S., Sales, F. R., & Moreira, F. M. S. (2020). Plant growth-promoting rhizobacterial communities from an area under the influence of iron mining and from the adjacent phytophysiognomies have high genetic diversity. Land Degradation & Development, 1–18. https://doi.org/10.1002/ldr.3593

  • Sylvester-Bradley, R., Asakawa, N., Torraca, S., Magalhães, F. M. M., Oliveira, L. A., & Pereira, R. (1982). Levantamento quantitativo de microrganismos solubilizadores de fosfato na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amazonica, 12, 15–22. https://doi.org/10.1590/1809-43921982121015

  • Sparling, G. P. (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 30, 195–207.

    Article  CAS  Google Scholar 

  • Teixeira, A. F. S., Kemmelmeier, K., Marascalchi, M. N., Stürmer, S. L., Carneiro, M. A. C., & Moreira, F. M. S. (2017). Arbuscular mycorrhizal fungal communities in an iron mining area and its surroundings: Inoculum potential, density, and diversity of spores related to soil properties. Ciência e Agrotecnologia, 41, 511–525. https://doi.org/10.1590/1413-70542017415014617.

    Article  CAS  Google Scholar 

  • Trindade, F. C., Ramos, S. J., Gastauer, M., Saraiva, A. M. M., Caldeira, C. F., Oliveira, G., & Valadares, R. B. S. (2020). Metaproteomes reveal increased capacity for stress tolerance of soil microbes in ferruginous tropical rocky outcrops. Pedobiologia, 81–82, 150664. https://doi.org/10.1016/j.pedobi.2020.150664

    Article  Google Scholar 

  • USEPA. (2007). Method 6200: Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. https://www.epa.gov/sites/production/files/2015-12/documents/6200.pdf

  • van Raij, B., Andrade, J. C., Cantarella, H., & Quaggio, J. A. (Eds.) (2001). Análise química para avaliação da fertilidade de solos tropicais. (285p.) Campinas: Instituto Agronômico de Campinas.

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wollum, A. G. (1982). Cultural Methods for soil Microorganisms. In: A.L. Page, R.H. Miller, & D.R. Keeney (Eds.), Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. Second Edition. Soil Science Society of America. USA.

  • Ye, L., Wang, L., & Jing, C. (2020). Biotransformation of adsorbed arsenic on iron minerals by coexisting arsenate-reducing and arsenite-oxidizing bacteria. Environmental Pollution, 256, 113471. https://doi.org/10.1016/j.envpol.2019.113471

    Article  CAS  Google Scholar 

  • Zanchi, C. S., Batista, É. R., Silva, A. O., Barbosa, M. V., Pinto, F. A., Santos, J. V., & Carneiro, M. A. C. (2021). Recovering Soils Affected by Iron Mining Tailing Using Herbaceous Species with Mycorrhizal Inoculation. Water, Air, and Soil Pollution, 232, 110. https://doi.org/10.1007/s11270-021-05061-y

    Article  CAS  Google Scholar 

Download references

Funding

Financial support and scholarship grants to the authors were provided by the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq, CNPq PDJ 150366/2019–1), and the State of Minas Gerais Research Support Foundation (FAPEMIG-APQ-01661–16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Aurélio Carbone Carneiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.O., Guimarães, A.A., Lopez, B.D.O. et al. Chemical, physical, and biological attributes in soils affected by deposition of iron ore tailings from the Fundão Dam failure. Environ Monit Assess 193, 462 (2021). https://doi.org/10.1007/s10661-021-09234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09234-4

Keywords

Navigation