Skip to main content
Log in

Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wetlands are carbon pools for terrestrial ecosystems and play an important role in the global carbon cycle. The Nanhui tidal flat is located at the Yangtze River estuary and has been disturbed by various human activities. However, the effect of human activities on the carbon accumulation capability and carbon storage of wetlands in the Nanhui tidal flat is poorly understood. In this study, the annual carbon accumulation capability and carbon storage of three types of Spartina alterniflora Loisel. wetlands in the Nanhui tidal flat, which were defined as a natural wetland, silt-promoting wetland, and artificial restored wetland, were evaluated by analyzing the plant carbon fixation capability, soil carbon emissions, and soil organic carbon (SOC) density. The results showed that the three wetlands all had a carbon sink effect and the natural wetland, artificial restored wetland, and silt-promoting wetland annually accumulated 7.94, 7.14, and 6.33 kg m−2 CO2, respectively. The existing SOC density in the subsurface soil (0–40 cm) in the natural wetland, silt-promoting wetland, and artificial restored wetland was 23.26, 17.95, and 12.21 kg m−2 CO2, respectively. The natural wetland, with no human disturbance, had a longer duration of waterlogging and greater tidal nutrition inputs than the other wetlands, resulting in a higher plant biomass and lower soil respiration (SR). It therefore had the strongest carbon accumulation capability and highest SOC storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnelli, A., Ascher, J., Corti, G., Ceccherini, M. T., Nannipieri, P., & Pietramellara, G. (2004). Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biology and Biochemistry, 36(5), 859–868.

    Article  CAS  Google Scholar 

  • Balling, S. S., & Resh, V. H. (1983). The influence of mosquito control recirculation ditches on plant biomass, production and composition in two San Francisco Bay salt marshes. Estuarine Coastal & Shelf Science, 16(2), 151–161.

    Article  Google Scholar 

  • Brevik, E. C., & Homburg, J. A. (2004). A 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. CATENA, 57(3), 221–232.

    Article  CAS  Google Scholar 

  • Bridges, E. M. (1980). World Soils. Quarterly Review of Biology, 130(3), 176.

    Google Scholar 

  • Cao, M., & Woodward, F. I. (1998). Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their response to climate change. Global Change Biology, 4(2), 185–198.

    Article  Google Scholar 

  • Chen, Q., Guo, X. W., Hu, Y. L., & Mao, Z. Q. (2008). Effects of waterlogging on root respiration intensity and respiratory enzyme activities of sweet cherry. Chinese Journal of Applied Ecology, 19(7), 1462–1466.

    CAS  Google Scholar 

  • Chen, J., Wang, L., Li, Y., Zhang, W., Fu, X., & Le, Y. (2012). Effect of Spartina alterniflora invasion and its controlling technologies on soil microbial respiration of a tidal wetland in Chongming Dongtan, China. Ecological Engineering, 41, 52–59.

    Article  Google Scholar 

  • Chen, G., Xu, M., Zhang, Y., Wang, C., Fan, H., & Wang, S. (2015). Soil respiration characteristics of eroded slopes under different organic carbon backgrounds in the Loess Hilly Region. Environmental Science, 36(9), 3383–3392.

    Google Scholar 

  • Cheng, X., Luo, Y., Chen, J., Lin, G., Chen, J., & Li, B. (2006). Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biology and Biochemistry, 38(12), 3380–3386.

    Article  CAS  Google Scholar 

  • Chmura, G. L. (2013). What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean & Coastal Management, 83, 25–31.

    Article  Google Scholar 

  • Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4), 1111.

    Article  CAS  Google Scholar 

  • Clymo, R. S. (1984). The limits to peat bog growth. Philosophical Transactions of the Royal Society B: Biological Sciences, 303(1117), 605–654.

    Google Scholar 

  • Cole, C. A., Brooks, R. P., & Wardrop, D. H. (2001). Assessing the relationship between biomass and soil organic matter in created wetlands of central Pennsylvania, USA. Ecological Engineering, 17(4), 423–428.

    Article  Google Scholar 

  • Cowardin, L. M. & Sather, J. H. (1979). Classification of wetlands and deep-water habitats of the United States. Technical Report Archive & Image Library.

  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408(6809), 184–187.

    Article  CAS  Google Scholar 

  • Daepp, M., Suter, D., Almeida, J. P. F., Isopp, H., Hartwig, U. A., Frehner, M., Blum, H., Nosberger, J., & Luscher, A. (2000). Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high-N-input system. Global Change Biology, 6(7), 805–816.

    Article  Google Scholar 

  • Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18(6), 1781–1796.

    Article  Google Scholar 

  • Fan, D., Wu, Y., Zhang, Y., Burr, G., Huo, M., & Li, J. (2017). South Flank of the Yangtze Delta: past, present, and future. Marine Geology, 392, 78–93.

    Article  Google Scholar 

  • Friborg, T. (2003). Siberian wetlands: Where a sink is a source. Geophysical Research Letters, 30(21), 2129.

    Article  CAS  Google Scholar 

  • Ge, Z., Zhou, X., Wang, K., Seppo, K., & Gong, J. (2010). Research methodology on carbon pool dynamics in the typical wetland of Yangtze river estuary. Acta Ecologica Sinica, 30(4), 1097–1108.

    Google Scholar 

  • Gomez-Casanovas, N., Matamala, R., Cook, D. R., & Gonzalez-Meler, M. A. (2012). Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands. Global Change Biology, 18(8), 2532–2545.

    Article  Google Scholar 

  • Gregory, P., Ingram, J., Campbell, B., Goudriaan, J., Hunt, L. A., Landsberg, J., et al. (1999). Managed production systems. In The terrestrial biosphere and global change. Cambridge University Press, 4, 229–270.

    Google Scholar 

  • Gu, Z., & Zhang, L. (2009). Physiological responses of Spartina alterniflora to long-term waterlogging stress. Acta Scientiae Circumstantiae, 29(4), 876–881.

    CAS  Google Scholar 

  • Haddadi, B. S., Hassanpour, H., & Niknam, V. (2016). Effect of salinity and waterlogging on growth, anatomical and antioxidative responses in Mentha aquatica L. Acta Physiologiae Plantarum, 38(5), 119.

    Article  CAS  Google Scholar 

  • He, J. (2010). Effects of local drought and tidal flooding on the phenotypic plasticity of Spartina alterniflora. Nanjing University.

  • Hirota, M., Kawada, K., Hu, Q., Kato, T., Tang, Y., Mo, W., Cao, G., & Mariko, S. (2007). Net primary productivity and spatial distribution of vegetation in an alpine wetland, Qinghai-Tibetan Plateau. Limnology, 8(2), 161–170.

    Article  Google Scholar 

  • Hu, Y., Wang, L., Tang, Y., Li, Y., Chen, J., Xi, X., Zhang, Y., Fu, X., Wu, J., & Sun, Y. (2014). Variability in soil microbial community and activity between coastal and riparian wetlands in the Yangtze River estuary-potential impacts on carbon sequestration. Soil Biology & Biochemistry, 70, 221–228.

    Article  CAS  Google Scholar 

  • Hu, Y., Wang, L., Fu, X., Yan, J., Wu, J., Tsang, Y., le, Y., & Sun, Y. (2016). Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways. Science of the Total Environment, 565, 637–648.

    Article  CAS  Google Scholar 

  • Huang, H., & Zhang, L. (2007). A study of the population dynamics of Spartina alterniflora at Jiuduansha shoals, Shanghai, China. Ecological Engineering, 29(2), 164–172.

    Article  Google Scholar 

  • Jiang, J., Huang, X., Li, X., Yan, Z., Li, X., & Ding, W. (2015). Soil organic carbon storage in tidal flat wetland and its relationship with soil physical and chemical factors——Taking Chongming Dongtan as an example. Journal of Ecology and Rural Environment, 31(4):540–547.

  • Kang, H., Freeman, C., & Ashendon, T. W. (2001). Effects of elevated CO2 on fen peat biogeochemistry. The Science of the Total Environment, 279(1-3), 45–50.

    Article  CAS  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627.

    Article  CAS  Google Scholar 

  • Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815–830.

    Article  CAS  Google Scholar 

  • Li, J. (1991). The rule of sediment transport on the Nanhui tidal flat in the Changjiang Estuary. Acta Oceanologica Sinica, 10(1), 117–127.

    Google Scholar 

  • Li, Y. L., Xiao, C. L., Wang, L., Zhang, W. Q., Zhang, S. P., Wang, H. L., et al. (2009). Difference and its formation cause in soil organic carbon accumulation capability of two typical tidal wetlands at Dongtan of Chongming Island in Shanghai. Ying Yong Sheng Tai Xue Bao, 20(6), 1310.

    CAS  Google Scholar 

  • Li, C., Tao, Y., Zhao, M., Yu, K., Xu, L., & Fang, S. (2018). Soil characteristics and their potential thresholds associated with Scirpus mariqueter distribution on a reclaimed wetland coast. Journal of Coastal Conservation, 22(6), 1107–1116.

    Article  Google Scholar 

  • Liu, Y., & Han, Z. (2009). The study of spatial and temporal variations on vegetation communities in Nanhui tidal flat of Changjiang Estuary by using remote sensing. Journal of Shanghai Ocean University, 18(05), 579–585.

    Google Scholar 

  • Luo, M., Huang, J.-F., Zhu, W.-F., & Tong, C. (2019). Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review. Hydrobiologia, 827(1), 31–49.

    Article  CAS  Google Scholar 

  • Ma, C., Kui, Y., Xingyi, D. & Mingran, L. (2011). Notice of retraction: study on the contribution of the wetland absorbing carbon in Shanghai, International Conference on E-business & E-government. IEEE.

  • Marcelo, K. R. B., Stone, M., Allison, S. D., & German, D. P. (2012). The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Global Change Biology, 18(4), 1468–1479.

    Article  Google Scholar 

  • Naidoo, G., & Kift, J. (2006). Responses of the saltmarsh rush Juncus kraussii to salinity and waterlogging. Aquatic Botany, 84(3), 217–225.

    Article  Google Scholar 

  • Nordgren, A. (1992). A method for determining microbially available N and P in an organic soil. Biology and Fertility of Soils, 13(4), 195–199.

    Article  CAS  Google Scholar 

  • Palta, J. A., Ganjeali, A., Turner, N. C., & Siddique, K. H. M. (2010). Effects of transient subsurface waterlogging on root growth, plant biomass and yield of chickpea. Agricultural Water Management, 97(10), 1469–1476.

    Article  Google Scholar 

  • Qian, L., Yan, J., Hu, Y., Gao, L., Wu, P., & Wang, L. (2019). Spatial distribution patterns of annual soil carbon accumulation and carbon storage in the Jiuduansha wetland of the Yangtze River estuary. Environmental Monitoring and Assessment, 191(12), 750.

    Article  CAS  Google Scholar 

  • Qin, Z., Yan, D., Jiao, B. Y., Liang, H. L., Dan, T. Y., Han, X., et al. (2012). Influence of different duration of waterlogging on the growth and C and N metabolism of soybean at seedling and flowering stages. Chinese Journal of Applied Ecology, 23(6), 1577–1584.

    Google Scholar 

  • Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B: Chemical and Physical Meteorology, 44(2), 81–99.

    Article  Google Scholar 

  • Segers, R. (1998). Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 41(1), 23–51.

    Article  CAS  Google Scholar 

  • Shen, G., Ge, X., & Huang, X. (2011). Spatial distribution of organic carbon density and estimation of carbon storage in surface soil of Chongming Island, Shanghai. Journal of Shanghai Jiaotong University (Agricultural Science), 29(6), 65–70.

    Google Scholar 

  • Shui, W., Bai, J., & Jian, X. (2016). Carbon fixation ability of desertified grassland ecosystem in Zoige Plateau. Journal of Natural Disasters, 25(6), 42–50.

    Google Scholar 

  • Tang, T., & Zhang, W. (2003). A discussion of ecological engineering benefits of Spartina spp and its ecological invasion. Engineering Science, 5(3), 15–20.

    Google Scholar 

  • Tang, Y., Wang, L., Jia, J., Li, Y., Zhang, W., Wang, H., & Sun, Y. (2011). Response of soil microbial respiration of tidal wetlands in the Yangtze River Estuary to different artificial disturbances. Ecological Engineering, 37(11), 1638–1646.

    Article  Google Scholar 

  • Tang, J., Cheng, H., & Fang, C. (2017). The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon. PLoS One, 12(11), e0186675.

    Article  CAS  Google Scholar 

  • Treseder, K. K. (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11(10), 1111–1120.

    Article  Google Scholar 

  • Wang, G., Qian, J., Cheng, G., & Lai, Y. (2002). Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. The Science of the Total Environment, 291(1-3), 207–217.

    Article  CAS  Google Scholar 

  • Wang, J., Zhong, Q., Ou, Q., Zhou, J., Zhang, C., & Wang, K. (2015). Characteristics of CO2 flux during the growing season of coastal reclamation wetland in Chongming Dongtan. Yangtze River Basin Resources and Environment, 24(3), 416–425.

    Google Scholar 

  • Webster, R. (2008). Soil sampling and methods of analysis - Edited by M.R. Carter & E.G. Gregorich. European Journal of Soil Science, 59(5), 1010–1011.

    Article  Google Scholar 

  • Xiao, Y. (2019). Microbiological impact mechanism of wetland soil organic carbon stability. Anhui Agricultural Science, 47(20), 15–17.

    Google Scholar 

  • Xiao, Q., Zheng, H., Ye, W., Chen, Y., & Zhu, Z. (2005). Effects of waterlogging on the growth and physiology of Spartina alterniflora. Chinese Journal of Ecology, 24(09), 1025–1028.

    Google Scholar 

  • Yu, F., Zhang, Z., Chen, L., Wang, J., & Shen, Z. (2018). Spatial distribution characteristics of soil organic carbon in subtropical forests of mountain Lushan, China. Environmental Monitoring and Assessment, 190(9), 545.

    Article  CAS  Google Scholar 

  • Zaher, H., Sabir, M., Benjelloun, H., & Paul-Igor, H. (2020). Effect of forest land use change on carbohydrates, physical soil quality and carbon stocks in Moroccan cedar area. Journal of Environmental Management, 254, 109544.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, Y., Wang, L., Chen, J., Hu, Y., Fu, X., et al. (2012). Variability in organic carbon storage capability of soils at different successional stages in Chongming Dongtan wetland and its microbial mechanism. Journal of Agro-Environment Science, 031(3), 631–637.

    CAS  Google Scholar 

  • Zhang, C., Niu, D., Hall, S. J., Wen, H., Li, X., Fu, H., Wan, C., & Elser, J. J. (2014). Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biology and Biochemistry, 75, 113–123.

    Article  CAS  Google Scholar 

  • Zhang, Z., Craft, C. B., Xue, Z., Tong, S., & Lu, X. (2016). Regulating effects of climate, net primary productivity, and nitrogen on carbon sequestration rates in temperate wetlands, Northeast China. Ecological Indicators, 70, 114–124.

    Article  CAS  Google Scholar 

  • Zhang, X. D., Zhang, Y. X., Zhu, L. H., Chi, W. Q., Yang, Z. S., Wang, B. Y., et al. (2018). Spatial-temporal evolution of the eastern Nanhui mudflat in the Changjiang (Yangtze River) Estuary under intensified human activities. Geomorphology, 309, 38–50.

    Article  Google Scholar 

  • Zhao, L., Li, J., Xu, S., Zhou, H., Li, Y., Gu, S., & Zhao, X. (2010). Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences, 7(4), 1207–1221.

    Article  CAS  Google Scholar 

  • Zheng, B., Pu, L., & Wang, X. (2016). Effects of waterlogging in different growth stages on the photosynthesis,growth,yield,and protein content of three wheat cultivars in Jianghan Plain. Agricultural Science & Technology, 17(5), 1083–1088.

    Google Scholar 

  • Zou, Y.-A., Tang, C.-D., Niu, J.-Y., Wang, T.-H., Xie, Y.-H., & Guo, H. (2016). Migratory waterbirds response to coastal habitat changes: conservation implications from long-term detection in the Chongming Dongtan wetlands, China. Estuaries & Coasts, 39(1), 273–286.

    Article  Google Scholar 

  • Zuo, S. H., Bei, L. I., & Yang, H. (2007). Topography evolution and analysis of Nanhui nearshore. Journal of Waterway & Harbor, 28(02), 108–112.

    Google Scholar 

Download references

Funding

We thanked the International Science Editing for editing the paper. This work was supported by the National Natural Science Foundation of China (No. 21876127) and China National Key Research and Development Program (No. 2017YFC0506004) and Research project of Ocean Bureau, Shanghai (yy007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Qian, L., Yan, J. et al. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Environ Monit Assess 192, 585 (2020). https://doi.org/10.1007/s10661-020-08547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08547-0

Keywords

Navigation