Skip to main content
Log in

Evaluating sensitivity of hyperspectral indices for estimating mangrove chlorophyll in Middle Andaman Island, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mangroves are the highly productive and extensive ecosystem in the tropical coasts. Chlorophyll is the key foliar determinant of mangrove productivity. Optical characteristics of mangrove markedly differ from land vegetation; hence, defining narrowband spectral indices most sensitive to mangrove chlorophyll is crucial, in view of their importance to the coastal environment and mounting biotic pressures. We assessed the sensitivity of a set of satellite hyperspectral remote sensing indices to mangrove canopy chlorophyll in Middle Andaman Island, India, and propose most robust spectral indices for mangrove chlorophyll estimation. We generated simple, modified simple, normalized difference vegetation, and non-linear indices from all possible two band combinations of EO-1 Hyperion bands in the 500–900 nm spectral range. The strength of correlation between each pair of spectral indices to mangrove chlorophyll was analyzed in 2D correlograms and validated using k-fold cross-validation technique. Results show that 549 nm, 559 nm (green) and 702 nm, 722 nm, 742 nm, and 763 nm (red-edge) wavelengths are the most sensitive to mangrove chlorophyll. We report performance of traditional chlorophyll indices and new indices with higher predictive capability for mangrove chlorophyll prediction. Simple ratio (559 nm/885 nm) offered the strongest correlation with mangrove chlorophyll (R2—0.75, RMSE—0.60, p < 0.05). Study findings will help researchers in deciding suitable chlorophyll indices for mangrove productivity and stress assessment. The best calibrated index was used to prepare mangrove chlorophyll spatial variability map of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam, E., Mutanga, O., & Rugeg, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management, 18, 281–296.

    Google Scholar 

  • Anonymous (2017). India State of Forest Report-2017, published by Forest Survey of India, Ministry of Environment, Forests & Climate Change, Dehradun, India.

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. Plant Physiology, 24, 1–15.

    CAS  Google Scholar 

  • Asner, G. P., & Martin, R. E. (2008). Spectral and chemical analysis of tropical forests: SCALING from leaf to canopy levels. Remote Sensing of Environment, 12, 3958–3970.

    Google Scholar 

  • Atzberger, C., Darvishzadeh, R., Immitzer, M., Schlerf, M., Skidmore, A., & Le Maire, G. (2015). Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 43, 19–31.

    Google Scholar 

  • Axelsson, C., Jones, S., Haywood, A., Suarez, L., Wilkes, P., Woodgate, W., Soto-Berelov, M. & Mellor, A. (2012). Key attributes for monitoring and assessing Australian forests: a land management perspective. Proceedings of the Geospatial Sci. Res. Symposium GSR2, Melbourne.

  • Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentrations: in a test using senescent tree leaves. International Journal of Remote Sensing, 19(4), 657–675.

    Google Scholar 

  • Blackburn, G. A. (1999). Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broad leaves. Remote Sensing of Environment, 70, 224–237.

    Google Scholar 

  • Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 58, 855–867.

    CAS  Google Scholar 

  • Boegh, E., Houborg, R., Bienkowski, J., Braban, C. F., Dalgaard, T., van Dijk, N., Dragosits, U., Holmes, E., Magliulo, V., Schelde, K., Di Tommasi, P., Vitale, L., Theobald, M. R., Cellier, P., & Sutton, M. A. (2013). Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop and grasslands in five European landscapes. Biogeosciences., 10, 6279–6307.

    CAS  Google Scholar 

  • Bréda, J. J. (2003). Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54, 2403–2417.

    Google Scholar 

  • Clevers, J. G. P. W., de Jong, S. M., Epema, G. F., Van der Meer, F., Bakker, W. H., Skidmore, A. K., & Scholte, K. H. (2002). Derivation of the red edge index using MERIS standard band setting. International Journal of Remote Sensing, 23, 3169–3184.

    Google Scholar 

  • Cohen, W. B., Maiersperger, T. K., Yang, Z. Q., Gower, S. T., Turner, D. P., & Ritts, W. D. (2003). Comparisons of land cover and LAI estimates derived from ETM plus and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products. Remote Sensing of Environment, 88, 233–255.

    Google Scholar 

  • Cunningham, F. X., & Schiff, J. A. (1986). Chlorophyll-protein complexes from Euglena gracilis and mutants deficient in chlorophyll b. Plant Physiology, 80, 231–238.

    CAS  Google Scholar 

  • Curran, P. J., Dungan, J. L., & Gholz, H. L. (1990). Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology, 7, 33–48.

    CAS  Google Scholar 

  • Curran, P. J., Dungan, J. L., Macler, B. A., & Plummer, S. E. (1991). The effect of a red leaf pigment on the relationship between red-edge and chlorophyll concentration. Remote Sensing of Environment, 35, 69–75.

    Google Scholar 

  • Curran, P. J., Windham, W. R., & Gholz, H. L. (1995). Exploring the relationship between reflectance red edge and chlorophyll content in slash pine leaves. Tree Physiology, 15, 203–206.

    CAS  Google Scholar 

  • Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., & Cho, M. (2008). LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4), 409–426.

    Google Scholar 

  • Datt, B. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a + b and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment, 66, 111–121.

    Google Scholar 

  • Datt, B. (1999). A new reflectance index for remote sensing of chlorophyll content in higher plants. Journal of Plant Physiology, 154, 30–36.

    CAS  Google Scholar 

  • Elarab, M., Ticlavila, A. M., Torres-Rua, A. F., Maslova, I., & Mckee, M. (2015). Estimating chlorophyll with thermal and broadband multispectral high-resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 43, 32–42.

    Google Scholar 

  • Filella, I., & Penuelas, J. (1994). The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing, 15(7), 1459–1470.

    Google Scholar 

  • Flores-de-Santiago, F., Kovacs, J. M., & Flores-Verdugo, F. (2013). The influence of seasonality in estimating mangrove leaf chlorophyll-a content from hyperspectral data. Wetlands Ecology and Management, 21(3), 193–207.

    CAS  Google Scholar 

  • Foody, G. M., & Atkinson, P. M. (2002). Uncertainty in remote sensing and GIS: fundamentals. Chichester: Wiley.

    Google Scholar 

  • Gholizadeh, H., Robeson, S. M., & Rahman, A. F. (2015). Comparing the performance of multispectral vegetation indices and machine-learning algorithms for remote estimation of chlorophyll content: a case study in the Sundarbans mangrove forest. International Journal of Remote Sensing, 36(12), 3114–3133.

    Google Scholar 

  • Giri, C., Zhu, Z., Tieszen, L. L., Singh, A., Gillette, S., & Kelmelis, J. A. (2008). Mangrove forest distributions and dynamics (1975-2005) of the tsunami-affected region of Asia. Journal of Biogeography, 35, 519–528.

    Google Scholar 

  • Gitelson, A. A., & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18, 2691–2697.

    Google Scholar 

  • Gitelson, A. A., & Merzylak, M. N. (1994). Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143, 286–292.

    CAS  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.

    Google Scholar 

  • Gitelson, A. A., Vina, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32, L08403.

    Google Scholar 

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2), 416–426.

    Google Scholar 

  • Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86, 542–553.

    Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2, 562–578.

    Google Scholar 

  • Heenkenda, M. K., Joyce, K. E., Maier, S. W., & de Bruin, S. (2015). Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 234–244.

    Google Scholar 

  • Hernández-Clemente, R., Navarro-Cerrillo, R. M., & Zarco-Tejada, P. J. (2012). Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT + DART simulations. Remote Sensing of Environment, 127, 298–315.

    Google Scholar 

  • Jackson, R. D., & Huete, A. R. (1991). Interpreting vegetation indices. Preventive Veterinary Medicine, 11, 185–200.

    Google Scholar 

  • Jago, R. A., Cutler, M. E. J., & Curran, P. J. (1999). Estimating canopy chlorophyll concentration from field and airborne spectra. Remote Sensing of Environment, 68(3), 217–224.

    Google Scholar 

  • Kokaly, R. F., Asner, G. P., Ollinger, S. V., Amrtin, M. E., & Wessman, C. A. (2009). Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment, 113(1), 78–91.

    Google Scholar 

  • Kumar, L., Schmidt, K. S., Dury, S., & Skidmore, A. K. (2001). Imaging spectrometry and vegetation science. In F. van der Meer & S. M. de Jong (Eds.), Imaging spectrometry (pp. 111–155). Dordrecht: Kluwer Academic.

    Google Scholar 

  • le Maire, G., Francois, C., Saoudani, K., Berveiller, D., Pontailler, J., Breda, N., Genet, H., Davi, H., & Dufrene, E. (2008). Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf biomass per area and leaf canopy biomass. Remote Sensing of Environment, 112, 3846–3864.

    Google Scholar 

  • Lichtenthaler, H. K., Gitelson, A., & Lang, M. (1996). Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of Plant Physiology, 148, 483–493.

    CAS  Google Scholar 

  • Myneni, R. B., Maggion, S., Laquinta, J. L., Gobron, N., Pinty, B., Kimes, D. S., Vertraete, M. M., & Williams, D. L. (1995). Optical remote sensing of vegetation: modelling, caveats, and algorithms. Remote Sensing of Environment, 51, 169–188.

    Google Scholar 

  • Ogashawara, I., Curtarelli, M. P., Souza, A. F., Augusto-Silva, P. B., Alcântara, E. H., & Stech, J. L. (2014). Interactive Correlation Environment (ICE) — a statistical web tool for data collinearity analysis. Remote Sensing, 6, 3059–3074.

    Google Scholar 

  • Pastor-Guzman, J., Atkinson, P., Dash, J., & Rioja-Nieto, R. (2015). Spatiotemporal variation in mangrove chlorophyll concentration using Landsat 8. Remote Sensing of Environment, 7, 14530–14558.

    Google Scholar 

  • Pearlman, J. S., Barry, P. S., Segal, C. C., Shepanski, J., Beiso, D., & Carman, S. L. (2003). Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1160–1173.

    Google Scholar 

  • Penuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230.

    CAS  Google Scholar 

  • Rasel, S. M. M., Chang, H., Diti, I. J., & Saintilan, T. R. N. (2016). Comparison of very near infrared (VNIR) wavelength from EO-1 Hyperion and WorldView-2 images from saltmarsh classification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Science, III-8, 85–92.

    Google Scholar 

  • Rosso, P., Ustin, S., & Hastings, A. (2005). Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data. International Journal of Remote Sensing, 26(23), 5169–5191.

    Google Scholar 

  • Roy, P. S., Padalia, H., Chauhan, N., Porwal, M. C., Gupta, S., Biswas, S., & Jagdale, R. (2005). Validation of a geospatial model for biodiversity characterization at landscape level -a study in Andaman and Nicobar Islands, India. Ecological Modelling, 185, 349–369.

    Google Scholar 

  • Schlerf, M. (2005). Determination of structural and chemical forest attributes using hyperspectral remote sensing data− case studies in Norway spruce forests. (M.Sc. Dissertation Thesis).

  • Schlerf, M., Atzberger, C., Hill, J., Buddenbaum, H., Werner, W., & Schüler, G. (2010). Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies Karst. L.,) using imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 12(1), 17–26.

    Google Scholar 

  • Sellers, P. J. (1989). Vegetation-canopy spectral reflectance and biophysical processes. In G. Asrar (Ed.), Theory and Applications of Optical Remote Sensing (pp. 297–333). New York: Wiley.

    Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.

    Google Scholar 

  • Singh, N. T., Mongia, A. D. & Ganesha Murthy, A. N. (1988). Soils of Andaman and Nicobar Islands, CARI, Port Blair, Bulletin. No.1 pp.78.

  • Stagakis, S., Markos, N., Sykioti, O., & Kyparissis, A. (2010). Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: an application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sensing of Environment, 114, 977–994.

    Google Scholar 

  • Suratman, M. N. (2008). Carbon sequestration potential of mangroves in Southeast Asia. In F. Bravo, R. Jandl, V. LeMay, & K. Gadow (Eds.), Managing forest ecosystems: the challenge of climate change (Vol. 17, pp. 297–315). Netherlands: Springer.

    Google Scholar 

  • Thenkabail, S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2), 158–182.

    Google Scholar 

  • Thomas, J. R., & Gausman, H. W. (1997). Leaf reflectance vs leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal, 69, 799–811.

    Google Scholar 

  • Verrelst, J., Rivera, J. P., Guadalarjara, A., Delegido, J. & Moreno, J. (2013). ARTMO’s new spectral indices (SI) module to rapidly evaluate a multitude of SIs for mapping of biophysical parameters. In EARSeL 8th SIG-Imaging Spectroscopy Workshop 2013, 08–10 April, Nantes, France.

  • Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P., Veroustraete, F., Clevers, J. G., & Moreno, J. (2015). Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–a review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 273–290.

    Google Scholar 

  • Vogelmann, J.E., Rock, B.N. & Moss, D.M. (1993). Red-edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14: 1563-1575.

  • Walters, B. B., Ronnback, P., Kovacs, J., Crona, B., Hussain, S., Badola, R., Primavera, J. H., Barbier, E. B., & Dahdouh, G. F. (2008). Ethnobiology, socio-economics and adaptive management of mangroves: a review. Aquatic Botany, 89, 220–236.

    Google Scholar 

  • Walton, M. E. M., Samonte-Tan, G. P. B., Primavera, J. H., Edwards-Jones, G., & Le Vay, L. (2006). Are mangroves worth replanting? The direct benefits of a community-based reforestation project. Environmental Conservation, 33, 335–343.

    Google Scholar 

  • Wandera, L. N. N. (2011). Mapping chlorophyll concentration in a mangrove forest by model inversion approach applied to hyperspectral imagery. University of Twente Faculty of Geo-Information and Earth Observation (ITC).

  • Warning, H. R., & Running, S. W. (2007). Forest ecosystems analysis at multiples scales (3rd ed.). San Diego: Academic Press.

    Google Scholar 

  • Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agricultural and Forest Meteorology, 148, 1230–1241.

    Google Scholar 

  • Yoder, B. J., & Waring, R. H. (1994). Normalized difference vegetation index of small Douglas-fir canopies with varyng chlorophyll concentrations. Remote Sensing of Environment, 48, 1–11.

    Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1491– 1507.

  • Zhang, C., Liu, Y., Kovacs, J. M., Flores-Verdugo, F., Flores-de-Santiago, F., & Chen, K. (2012). Spectral response to varying levels of leaf pigments collected from a degraded mangrove forest. Journal of Applied Remote Sensing, 6, 1–14.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Alok Saxena, Principal Chief Conservator of Forests (Retd.), Department of Environment and Forests, Andaman and Nicobar Islands, India, for the encouragement and support. Mr. P. Ragavan is thanked for the help during the field data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajee George.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Highlights

1. Hyperspectral indices for mangrove chlorophyll estimation were evaluated.

2. EO-1 Hyperion-derived simple, normalized and non-linear spectral indices were tested.

3. Green (549 nm, 559 nm) and red-edge (702 nm, 722 nm, 742 nm, 763 nm) bands showed higher sensitivity to mangrove chlorophyll.

4. SR (559 nm and 885 nm) (R2 = 0.75, p < 0.05) offered best correlation with mangrove chlorophyll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, R., Padalia, H., Sinha, S.K. et al. Evaluating sensitivity of hyperspectral indices for estimating mangrove chlorophyll in Middle Andaman Island, India. Environ Monit Assess 191 (Suppl 3), 785 (2019). https://doi.org/10.1007/s10661-019-7679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7679-6

Keywords

Navigation