Skip to main content
Log in

Spatial and temporal variations in composition of algae assemblages with environmental variables in an urban stream (Ankara, Turkey)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phytoplankton and epipelon assemblages form the main constituents, and they are producers in aquatic ecosystems, such as streams and rivers. This study was carried out between May 2008 and April 2009 to determine the impacts of polluted water on species variations, compositions, and community metrics in phytoplankton and epipelon at six stations on Ankara Stream. A total of 231 taxa were recorded during the study period, with 131 Bacillariophyta, 3 Charophyta, 41 Chlorophyta, 30 Cyanobacteria, 25 Euglenophyta, and 1 Ochrophyta. Heterogeneity of the stream stations was determined by the use of hierarchical cluster analysis (HCA). Community metrics were compared by using non-parametric tests, while canonical correspondence analysis (CCA) was used for the relationships between environmental variables and species. Variations in water quality and species composition along the stream flow revealed a significant spatial heterogeneity (p < 0.05). However, the upper stations of the stream were represented by unpolluted water quality with low nutrients and conductivity, and the mid- and downstream stations were characterized by high concentrations of ammonia (up to 60 mg L−1) and o-phosphate (up to 25 mg/L), with low concentrations of dissolved oxygen (< 1 mg L−1). The results, clearly supported by indicator taxa, showed that various domestic and industrial discharges affected the increase in pollution and the spatial heterogeneity. The findings obtained in this study will contribute to future improvements in Ankara Stream watershed studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ács, É., Szabó, K., Tóth, B., & Kiss, K. T. (2004). Investigation of benthic algal communities, especially diatoms of some Hungarian streams in connection with reference conditions of the water framework directives. Acta Botanica Hungarica, 46, 255–278.

    Article  Google Scholar 

  • Anene, A. (2003). Techniques in hydrobiology. In E. Onyeike & J. O. Osuji (Eds.), Research techniques in biological and chemical sciences (pp. 174–189). Owerri: Springfield Publishers Ltd.

    Google Scholar 

  • APHA, AWWA, & WEF. (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Atıcı, T., Obalı, O., & Calışkan, H. (2005). Control of water pollution and phytoplanktonic algal flora in Bayındır Dam reservoir (Ankara). E.U. Journal of Fisheries & Aquatic Sciences, 22, 79–82.

    Google Scholar 

  • Bere, T., & Tundisi, J. G. (2011). Diatom-based water quality assessment in streams influence by urban pollution: effects of natural and two selected artificial substrates, São Carlos-SP, Brazil. Brazilian Journal of Aquatic Sciences and Technology, 15, 54–63.

    Article  Google Scholar 

  • Bowes, M. J., Gozzard, E., Johnson, A. C., Scarlett, P. M., Roberts, C., Read, D. S., Armstrong, L. K., Harman, S. A., & Wickham, H. D. (2012). Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass? Science of the Total Environment, 426, 45–55.

    Article  CAS  Google Scholar 

  • Çelekli, A., Aslanargun, H., Soysal, Ç., Gültekin, E., & Bozkurt, H. (2016). Biochemical responses of filamentous algae in different aquatic ecosystems in South East Turkey and associated water quality parameters. Ecotoxicology and Environmental Safety, 133, 403–412.

    Article  Google Scholar 

  • Dalu, T., Bere, T., Richoux, N. B., & Froneman, P. W. (2015). Assessment of the spatial and temporal variations in periphyton communities along a small temperate river system: a multimetric and stable isotope analysis approach. South African Journal of Botany, 100, 203–212.

    Article  CAS  Google Scholar 

  • Duong, T. T., Coste, M., Feurtet-Mazel, A., Dang, D. K., Gold, C., Park, Y. S., & Boudou, A. (2006). Impact of urban pollution from the Hanoi Area on benthic diatom communities collected from the Red, Nhue and Tolich Rivers (Vietnam). Hydrobiologia, 563, 201–216.

    Article  CAS  Google Scholar 

  • Gerald, V. S., Michael, M. E., Ketterer, E., & Johansen, J. R. (2006). Ecology and assessment of the benthic diatom communities of four Lake Erie estuaries using Lange-Bertalot tolerance values. Hydrobiologia, 561, 239–249.

    Article  Google Scholar 

  • Gillett, N. D., Pan, Y., Asarian, E. J., & Kann, J. (2016). Spatial and temporal variability of river periphyton below a hypereutrophic lake and a series of dams. Science of the Total Environment, 541, 1382–1392.

    Article  CAS  Google Scholar 

  • Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403–424.

    Article  Google Scholar 

  • Huber-Pestalozzi, P., Huber-Pestalozzi, G., Förster, K., & Med, G. (1982). Das Phytoplankton des SuBwassers: section 8 pt 1, Conjugatophyceae Zygnematales und Desmidiales (excl. Zygnemataceae). Stuttgart: E Schweizerbart'sche Verlagsbuchhandlung.

    Google Scholar 

  • John, D. M., Whitton, B. A., & Brook, A. J. (2002). The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae (Vol. 1). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kadhim, N. F., Al-Amari, M. J., & Hassan, F. M. (2013). The spatial and temporal distribution of epipelic algae and related environmental factors in Neel stream, Babil province. International Journal of Aquatic Science, 4, 23–32.

    Google Scholar 

  • Kıvrak, E., & Uygun, A. (2012). The structure and diversity of the epipelic diatom community in a heavily polluted stream (the Akarçay, Turkey) and their relationship with environmental variables. Journal of Freshwater Ecology, 27(3), 443–457.

    Article  Google Scholar 

  • Korshikov, O. B. A. (1987). The freshwater algae of the Ukrainian SSR. Dehra Dun: Bishen Singh Mahendra Pal Singh and Koeltz Scientific Books.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa, Band 2/1. Stuttgart: Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa, Band 2/2. Stuttgart: Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1991a). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa, Band 2/3. Stuttgart: Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1991b). Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1–4. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa, Band 2/4. Stuttgart: Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Leira, M., & Sabater, S. (2005). Diatom assemblages distribution in Catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research, 39, 73–82.

    Article  CAS  Google Scholar 

  • Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Licursi, M., & Gómez, N. (2002). Benthic diatoms and some environmental conditions in three lowland streams. Annales de Limnologie - International Journal of Limnology, 38, 109–118.

    Article  Google Scholar 

  • Licursi, M., Gómez, N., & Sabater, S. (2016). Effects of nutrient enrichment on epipelic diatom assemblages in a nutrient-rich lowland stream, Pampa Region, Argentina. Hydrobiologia, 766, 135–150. https://doi.org/10.1007/s10750-015-2450-7.

    Article  Google Scholar 

  • Nardelli, M., Bueno, N., Ludwig, T., & Guimarães, A. (2016). Structure and dynamics of the planktonic diatom community in the Iguassu River, Paraná State, Brazil. Brazilian Journal of Biology, 76, 374–386.

    Article  CAS  Google Scholar 

  • Pan, Y., Stevenson, R. J., Hill, B. H., Kaufmann, P. R. & Herlihy, A. T. (1999). Spatial patterns and ecological determinants of benthic algal assemblages in mid-Atlantic streams, USA. Journal of Phycology, 35, 460-468.

  • Radloff, P. L., Contreras, C., Whisenant, A., & Bronson, J. M. (2010). Nutrient effects in Small Brazos basin streams final report. WQTS-2010-02. Austin, Texas: Water Quality Program, Texas Parks and Wildlife Department.

    Google Scholar 

  • Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24, 417–428.

    Article  Google Scholar 

  • Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The diatoms. Biology, morphology of the genera. Cambridge: Cambridge University Press.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Shulkin, V. M., & Nikulina, T. V. (2015). Comprehensive assessment of river-water quality in Primorskii Krai, Russian Federation, with respect to chemical characteristics and composition of periphyton algae. Inland Water Biology, 8, 15–24.

    Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124.

    Article  CAS  Google Scholar 

  • Sinha, S., Basant, A., Malik, A., & Singh, K. P. (2009). Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicology, 18, 555–566.

    Article  CAS  Google Scholar 

  • Soininen, J. (2002). Responses of epilithic diatom communities to environmental gradients in some Finnish Rivers. International Review of Hydrobiology, 87, 11–24.

    Article  Google Scholar 

  • Stevenson, R. J., Bennett, B. J., Jordan, D. N., & French, R. D. (2012). Phosphorus regulates stream injury by filamentous green algae, DO, and pH with thresholds in responses. Hydrobiologia, 695, 25–42. https://doi.org/10.1007/s10750-012-1118-9.

    Article  CAS  Google Scholar 

  • Stevenson, R. J. & Y. Pan (1999). Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge: 11-40.

  • Sullivan, B. E., Prahl, F. G., Small, L. F., & Covert, P. A. (2001). Seasonality of phytoplankton production in the Columbia River: a natural or anthropogenic pattern? Geochimica et Cosmochimica Acta, 65, 1125–1139.

    Article  CAS  Google Scholar 

  • ter Braak, C. J. F. (1995). Ordination. In R. H. G. Jongman, C. J. F. ter Braak, & O. F. R. van Tongeren (Eds.), Data analysis in community and landscape ecology (pp. 91–173). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • ter Braak, C. F., & Verdonschot, P. M. (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 57, 255–289.

    Article  Google Scholar 

  • Ting, C., Stephen, Y. P., & Yebu, L. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.

    Article  Google Scholar 

  • Tornés, E., Pérez, M. C., Durán, C., & Sabater, S. (2014). Reservoirs override seasonal variability of phytoplankton communities in a regulated Mediterranean river. Science of the Total Environment, 475, 225–233.

    Article  Google Scholar 

  • Van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–133.

    Article  Google Scholar 

  • Varol, M., & Şen, B. (2018). Abiotic factors controlling the seasonal and spatial patterns of phytoplankton community in the Tigris River, Turkey. River Research and Applications Wiley, 34, 13–23.

    Article  Google Scholar 

  • Vural, N., Duygu, Y., Kumbur, H. (1997). Monitoring of Anionic Surfactants in Ankara Stream. Revista Internacional de Contaminación Ambiental, 13(1), 47-50.

  • Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba-Argentina). Water Research, 35, 2881–2894.

    Article  CAS  Google Scholar 

  • Youngman, R.E. (1978). Measurement of chlorophyll. WRC Technical Report TR82, UK.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tülay Özer.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özer, T., Açıkgöz Erkaya, İ., Koçer, M.A.T. et al. Spatial and temporal variations in composition of algae assemblages with environmental variables in an urban stream (Ankara, Turkey). Environ Monit Assess 191, 387 (2019). https://doi.org/10.1007/s10661-019-7527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7527-8

Keywords

Navigation