Skip to main content

Advertisement

Log in

Polycyclic aromatic hydrocarbons in surface sediments from the Curonian Lagoon and the Nemunas River Delta (Lithuania, Baltic Sea): distribution, origin, and suggestions for the monitoring program

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Curonian Lagoon is the largest lagoon in the Baltic Sea region suffering from a great anthropogenic pressure. Pollution sources within the Nemunas River basin and those within the Klaipėda Port are the main threats to this sensitive water area. For the first time, such a detailed study on 16 priority polycyclic aromatic hydrocarbon distribution, origin, and ecological risks was carried out in the Curonian Lagoon and the Nemunas River Delta. Total PAH concentration ranged from 5.6 to 528.4 ng g−1 d.w., demonstrating low to moderate pollution. The main identified PAH sources were vehicular and biomass emission, petroleum product spills, and coal combustion. A particularly high naphthalene concentration posing adverse biological effects was detected in the Nemunas River Delta region. Occasional adverse biological effects related to acenaphthene and dibenzo(a)anthracene might be observed in several Curonian Lagoon locations. The data obtained could serve for the improvement of the current regional environmental monitoring program: it reveals the need to take into account different sedimentary environments while choosing sampling locations. In addition to that, more PAHs could be included to the hazardous substance list.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.

    Article  Google Scholar 

  • Achten, C., & Hofmann, T. (2009). Native polycyclic aromatic hydrocarbons (PAH) in coals – a hardly recognized source of environmental contamination. Science of the Total Environment, 407(8), 2461–2473. https://doi.org/10.1016/j.scitotenv.2008.12.008.

    Article  CAS  Google Scholar 

  • Acquavita, A., Falomo, J., Predonzani, S., Tamberlich, F., Bettoso, N., & Mattassi, G. (2014). The PAH level, distribution and composition in surface sediments from a Mediterranean lagoon: the Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Marine Pollution Bulletin, 81(1), 234–241. https://doi.org/10.1016/j.marpolbul.2014.01.041.

    Article  CAS  Google Scholar 

  • Afshar-Mohajer, N., Wilson, C., Wu, C.-Y., & Stormer, J. E. (2016). Source apportionment of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Palm Beach County, Florida. Journal of the Air & Waste Management Association, 66(4), 377–386. https://doi.org/10.1080/10962247.2016.1138902.

    Article  CAS  Google Scholar 

  • Agarwal, T., Khillare, P. S., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous Materials, 163(2), 1033–1039. https://doi.org/10.1016/j.jhazmat.2008.07.058.

    Article  CAS  Google Scholar 

  • Alam, M. S., Delgado-Saborit, J. M., Stark, C., & Harrison, R. M. (2013). Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity. Atmospheric Environment, 77, 24–35. https://doi.org/10.1016/j.atmosenv.2013.04.068.

    Article  CAS  Google Scholar 

  • Aleksandrov, S. V. (2010). Biological production and eutrophication of Baltic Sea estuarine ecosystems: the Curonian and Vistula Lagoons. Marine Pollution Bulletin, 61(4), 205–210. https://doi.org/10.1016/j.marpolbul.2010.02.015.

    Article  CAS  Google Scholar 

  • Annicchiarico, C., Buonocore, M., Cardellicchio, N., Di Leo, A., Giandomenico, S., & Spada, L. (2011). PCBs, PAHs and metal contamination and quality index in marine sediments of the Taranto Gulf. Chemistry and Ecology, 27(sup1), 21–32. https://doi.org/10.1080/02757540.2010.536156.

    Article  CAS  Google Scholar 

  • Barakat, A. O., Mostafa, A., Wade, T. L., Sweet, S. T., & El Sayed, N. B. (2011). Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt. Marine Pollution Bulletin, 62(9), 1969–1978. https://doi.org/10.1016/j.marpolbul.2011.06.024.

    Article  CAS  Google Scholar 

  • Baran, S., Oleszczuk, P., Lesiuk, A., & Baranowska, E. (2002). Trace metals and polycyclic aromatic hydrocarbons in surface sediment samples from the Narew River (Poland). Polish Journal of Environmental Studies, 11(4), 299–305.

    CAS  Google Scholar 

  • Barhoumi, B., LeMenach, K., Devier, M.-H., Ameur, W. B., Etcheber, H., Budzinski, H., Cachot, J., & Driss, M. R. (2014). Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Bizerte Lagoon, Tunisia: levels, sources, and toxicological significance. Environmental Monitoring and Assessment, 186(5), 2653–2669. https://doi.org/10.1007/s10661-013-3569-5.

    Article  CAS  Google Scholar 

  • Baumard, P., Budzinski, H., & Garrigues, P. (1998). Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea. Environmental Toxicology and Chemistry, 17, 765–776.

    Article  CAS  Google Scholar 

  • Bergqvist, P.-A., Jegorova, I., Kaunelienė, V., & Žaliauskienė, A. (2007). Dissolved organochlorine and PAH pollution profiles in Lithuanian and Swedish surface waters. Bulletin of Environmental Contamination and Toxicology, 79(2), 147–152. https://doi.org/10.1007/s00128-007-9095-9.

    Article  CAS  Google Scholar 

  • Bignal, K. L., Langridge, S., & Zhou, J. L. (2008). Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter from biomass combustion in a wood-fired boiler under varying boiler conditions. Atmospheric Environment, 42(39), 8863–8871. https://doi.org/10.1016/j.atmosenv.2008.09.013.

    Article  CAS  Google Scholar 

  • Blazchishin, A. I. (1984). Main stages of the Baltic Sea history. In A. P. Lisitzin (Ed.), History of geology and geochemistry of the Baltic Sea (pp. 98–105). Moscow: Nauka.

    Google Scholar 

  • Budzinski, H., Jones, I., Bellocq, J., Piérard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58(1), 85–97. https://doi.org/10.1016/S0304-4203(97)00028-5.

    Article  CAS  Google Scholar 

  • Chen, C.-W., & Chen, C.-F. (2011). Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Marine Pollution Bulletin, 63(5), 417–423. https://doi.org/10.1016/j.marpolbul.2011.04.047.

    Article  CAS  Google Scholar 

  • Chen, C.-F., Chen, C.-W., Dong, C.-D., & Kao, C.-M. (2013). Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. Science of the Total Environment, 463-464, 1174–1181. https://doi.org/10.1016/j.scitotenv.2012.06.101.

    Article  CAS  Google Scholar 

  • Colom-Díaz, J. M., Alzueta, M. U., Fernandes, U., & Costa, M. (2017). Emissions of polycyclic aromatic hydrocarbons during biomass combustion in a drop tube furnace. Fuel, 207, 790–800. https://doi.org/10.1016/j.fuel.2017.06.084.

    Article  CAS  Google Scholar 

  • Dailidienė, I., & Davulienė, L. (2008). Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984–2005. Journal of Marine Systems, 74, S20–S29. https://doi.org/10.1016/j.jmarsys.2008.01.014.

    Article  Google Scholar 

  • Enell, A., Lundstedt, S., Arp, H. P. H., Josefsson, S., Cornelissen, G., Wik, O., & Berggren Kleja, D. (2016). Combining leaching and passive sampling to measure the mobility and distribution between porewater, DOC, and colloids of native oxy-PAHs, N-PACs, and PAHs in historically contaminated soil. Environmental Science & Technology, 50(21), 11797–11805. https://doi.org/10.1021/acs.est.6b02774.

    Article  CAS  Google Scholar 

  • Folk, R. L. (1974). Petrology of sedimentary rocks. Austin: Hemphill Publishing Co..

    Google Scholar 

  • Friedman, C. L., & Selin, N. E. (2012). Long-range atmospheric transport of polycyclic aromatic hydrocarbons: a global 3-D model analysis including evaluation of Arctic sources. Environmental Science & Technology, 46(17), 9501–9510. https://doi.org/10.1021/es301904d.

    Article  CAS  Google Scholar 

  • Galkus, A. (2004). Peculiarities of sedimentary enviroment of most polluted bottom sediments in the Lithunian waters of Curonian Lagoon. In The Geographic Yearbook (Vol. 37, pp. 84–94). Vilnius.

  • Galkus, A., & Jokšas, K. (1997). Sedimentary material in the transitional aquasystem. Vilnius: Institute of Geography.

    Google Scholar 

  • Gasiūnaitė, Z. R., Daunys, D., Olenin, S., & Razinkovas, A. (2008). The Curonian Lagoon. In U. Schiewer (Ed.), Ecology of Baltic coastal waters (pp. 197–215). Berlin: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Gonzalez, J. J., Vinas, L., Franco, M. A., Fumega, J., Soriano, J. A., Grueiro, G., et al. (2006). Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill. Marine Pollution Bulletin, 53(5–7), 250–259. https://doi.org/10.1016/j.marpolbul.2005.09.039.

    Article  CAS  Google Scholar 

  • Gu, Y.-G., Lin, Q., Lu, T.-T., Ke, C.-L., Sun, R.-X., & Du, F.-Y. (2013). Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in surface sediments from Nan’ao Island, a representative mariculture base in South China. Marine Pollution Bulletin, 75(1), 310–316. https://doi.org/10.1016/j.marpolbul.2013.07.039.

    Article  CAS  Google Scholar 

  • Harris, K. A., Yunker, M. B., Dangerfield, N., & Ross, P. S. (2011). Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: concentrations, composition, and associated risks to protected sea otters. Environmental Pollution, 159(10), 2665–2674. https://doi.org/10.1016/j.envpol.2011.05.033.

    Article  CAS  Google Scholar 

  • Iqbal, J., Overton, E. B., & Gisclair, D. (2008). Polycyclic aromatic hydrocarbons in Louisiana Rivers and coastal environments: source fingerprinting and forensic analysis. Environmental Forensics, 9(1), 63–74. https://doi.org/10.1080/15275920801888301.

    Article  CAS  Google Scholar 

  • Jakimavičius, D., Kriaučiūnienė, J., & Šarauskienė, D. (2018). Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia, 60, 378–389. https://doi.org/10.1016/j.oceano.2018.02.003.

    Article  Google Scholar 

  • Jarašius, L. (2015). Possibilities of ecological restoration of raised bog plant communities in degraded parts and in a cutover peatland of Aukštumala raised bog. Vilnius: Vilnius University.

    Google Scholar 

  • Jokšas, K., Galkus, A., Stakėnienė, R. (2003). The only Lithuanian seaport and its environment. (pp. 223-252). Vilnius: Institute of Geology and Geography.

  • Jokšas, K., Galkus, A., & Stakėnienė, R. (2016). Heavy metal contamination of the Curonian Lagoon bottom sediments (Lithuanian waters area). BALTICA, 29(2), 107–120.

  • Jonker, M. T. O., & Muijs, B. (2010). Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals. Chemosphere, 80(3), 223–227. https://doi.org/10.1016/j.chemosphere.2010.04.041.

    Article  CAS  Google Scholar 

  • Kanzari, F., Syakti, A. D., Asia, L., Malleret, L., Mille, G., Jamoussi, B., Abderrabba, M., & Doumenq, P. (2012). Aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine, and organophosphorous pesticides in surface sediments from the Arc river and the Berre lagoon, France. Environmental Science and Pollution Research, 19(2), 559–576. https://doi.org/10.1007/s11356-011-0582-5.

    Article  CAS  Google Scholar 

  • Katsoyiannis, A., & Breivik, K. (2014). Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environmental Pollution, 184, 488–494. https://doi.org/10.1016/j.envpol.2013.09.028.

    Article  CAS  Google Scholar 

  • Keith, L., & Telliard, W. (1979). ES&T special report: priority pollutants: I-a perspective view. Environmental Science & Technology, 13(4), 416–423. https://doi.org/10.1021/es60152a601.

    Article  Google Scholar 

  • Lacorte, S., Raldúa, D., Martínez, E., Navarro, A., Diez, S., Bayona, J. M., & Barceló, D. (2006). Pilot survey of a broad range of priority pollutants in sediment and fish from the Ebro river basin (NE Spain). Environmental Pollution, 140(3), 471–482. https://doi.org/10.1016/j.envpol.2005.08.008.

    Article  CAS  Google Scholar 

  • Larsen, R. K., 3rd, & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science & Technology, 37(9), 1873–1881.

    Article  CAS  Google Scholar 

  • Legorburu, I., Rodríguez, J. G., Valencia, V., Solaun, O., Borja, Á., Millán, E., Galparsoro, I., & Larreta, J. (2014). Sources and spatial distribution of polycyclic aromatic hydrocarbons in coastal sediments of the Basque Country (Bay of Biscay). Chemistry and Ecology, 30(8), 701–718. https://doi.org/10.1080/02757540.2014.894990.

    Article  CAS  Google Scholar 

  • Leong, L. S., & Tanner, P. A. (1999). Comparison of methods for determination of organic carbon in marine sediment. Marine Pollution Bulletin, 38(10), 875–879. https://doi.org/10.1016/S0025-326X(99)00013-2.

    Article  CAS  Google Scholar 

  • Li, J., Dong, H., Zhang, D., Han, B., Zhu, C., Liu, S., Liu, X., Ma, Q., & Li, X. (2015). Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China. Marine Pollution Bulletin, 96(1–2), 485–490. https://doi.org/10.1016/j.marpolbul.2015.05.002.

    Article  CAS  Google Scholar 

  • Lin, L., Dong, L., Meng, X., Li, Q., Huang, Z., Li, C., Li, R., Yang, W., & Crittenden, J. (2018). Distribution and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in water and surface sediment from the Three Gorges Reservoir. Journal of Environmental Sciences, 69, 271–280. https://doi.org/10.1016/j.jes.2017.11.004.

    Article  Google Scholar 

  • Liu, Y., Chen, L., Huang, Q.-H., Li, W.-Y., Tang, Y.-J., & Zhao, J.-F. (2009). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Science of the Total Environment, 407(8), 2931–2938. https://doi.org/10.1016/j.scitotenv.2008.12.046.

    Article  CAS  Google Scholar 

  • Liu, Y.-E., Huang, L.-Q., Luo, X.-J., Tan, X.-X., Huang, C.-C., Corella, P. Z., et al. (2018). Determination of organophosphorus flame retardants in fish by freezing-lipid precipitation, solid-phase extraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1532, 68–73. https://doi.org/10.1016/j.chroma.2017.12.001.

    Article  CAS  Google Scholar 

  • Lubecki, L., & Kowalewska, G. (2012). Indices of PAH origin—a case study of the Gulf of Gdańsk (SE Baltic) sediments. Polycyclic Aromatic Compounds, 32(3), 335–363. https://doi.org/10.1080/10406638.2011.640734.

    Article  CAS  Google Scholar 

  • Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5(4), 253–278. https://doi.org/10.1007/bf00118995.

    Article  CAS  Google Scholar 

  • Macias-Zamora, J. V., Mendoza-Vega, E., & Villaescusa-Celaya, J. A. (2002). PAHs composition of surface marine sediments: a comparison to potential local sources in Todos Santos Bay, B.C., Mexico. Chemosphere, 46(3), 459–468.

    Article  CAS  Google Scholar 

  • Mai, B.-X., Fu, J.-M., Sheng, G.-Y., Kang, Y.-H., Lin, Z., Zhang, G., Min, Y. S., & Zeng, E. Y. (2002). Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environmental Pollution, 117(3), 457–474. https://doi.org/10.1016/S0269-7491(01)00193-2.

    Article  CAS  Google Scholar 

  • Martinez, E., Gros, M., Lacorte, S., & Barceló, D. (2004). Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels. Journal of Chromatography A, 1047(2), 181–188. https://doi.org/10.1016/j.chroma.2004.07.003.

    Article  CAS  Google Scholar 

  • Mažeika, J. (2006). Use of lead-210 and carbon-14 in investigations of peat accumulation in Aukštumala raised bog, western Lithuania. BALTICA, 19(1), 30–37.

    Google Scholar 

  • Newton, A., Icely, J., Cristina, S., Brito, A., Cardoso, A. C., Colijn, F., Riva, S. D., Gertz, F., Hansen, J. W., Holmer, M., Ivanova, K., Leppäkoski, E., Canu, D. M., Mocenni, C., Mudge, S., Murray, N., Pejrup, M., Razinkovas, A., Reizopoulou, S., Pérez-Ruzafa, A., Schernewski, G., Schubert, H., Carr, L., Solidoro, C., PierluigiViaroli, & Zaldívar, J. M. (2014). An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuarine, Coastal and Shelf Science, 140, 95–122. https://doi.org/10.1016/j.ecss.2013.05.023.

    Article  Google Scholar 

  • Nisbet, C., & LaGoy, P. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.

    Article  CAS  Google Scholar 

  • Niu, L., Cai, H., Van Gelder, P. H. A. J. M., Luo, P., Liu, F., & Yang, Q. (2018). Dynamics of polycyclic aromatic hydrocarbons (PAHs) in water column of Pearl River estuary (China): seasonal pattern, environmental fate and source implication. Applied Geochemistry, 90, 39–49. https://doi.org/10.1016/j.apgeochem.2017.12.014.

    Article  CAS  Google Scholar 

  • Oliveira, C., Martins, N., Tavares, J., Pio, C., Cerqueira, M., Matos, M., Silva, H., Oliveira, C., & Camões, F. (2011). Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere, 83(11), 1588–1596. https://doi.org/10.1016/j.chemosphere.2011.01.011.

    Article  CAS  Google Scholar 

  • Patrolecco, L., Ademollo, N., Capri, S., Pagnotta, R., & Polesello, S. (2010). Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere, 81(11), 1386–1392. https://doi.org/10.1016/j.chemosphere.2010.09.027.

    Article  CAS  Google Scholar 

  • Pies, C., Yang, Y., & Hofmann, T. (2007). Distribution of polycyclic aromatic hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar River. Journal of Soils and Sediments, 7(4), 216–222. https://doi.org/10.1065/jss2007.06.233.

    Article  CAS  Google Scholar 

  • Pinto, M. I., Burrows, H. D., Sontag, G., Vale, C., & Noronha, J. P. (2016). Priority pesticides in sediments of European coastal lagoons: a review. Marine Pollution Bulletin, 112(1), 6–16. https://doi.org/10.1016/j.marpolbul.2016.06.101.

    Article  CAS  Google Scholar 

  • Pohl, A., Kostecki, M., Jureczko, I., Czaplicka, M., & Łozowski, B. (2018). Polycyclic aromatic hydrocarbons in water and bottom sediments of a shallow, lowland dammed reservoir (on the example of the reservoir Blachownia, South Poland). Archives of Environmental Protection, 44(1), 10–23.

    Google Scholar 

  • Pustelnikovas, O. (1998). Geochemistry of sediments of the Curonian Lagoon (Baltic Sea) (pp.1-234). Vilnius: Institute of Geography.

  • Pustelnikovas, O. (2008). On the Eastern Baltic environment changes: a case study of the Curonian Lagoon area. Geologija, 50(2 (62)), 80–87.

    Article  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010.

    Article  CAS  Google Scholar 

  • Remeikaitė-Nikienė, N., Lujanienė, G., Malejevas, V., Barisevičiūtė, R., Žilius, M., Garnaga-Budrė, G., & Stankevičius, A. (2016). Distribution and sources of organic matter in sediments of the South-Eastern Baltic Sea. Journal of Marine Systems, 157, 75–81. https://doi.org/10.1016/j.jmarsys.2015.12.011.

    Article  Google Scholar 

  • Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., & Nishigaki, I. (2015). Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 5(3), 182–189. https://doi.org/10.1016/S2221-1691(15)30003-4.

    Article  CAS  Google Scholar 

  • Rimayi, C., Chimuka, L., Odusanya, D., de Boer, J., & Weiss, J. M. (2017). Source characterisation and distribution of selected PCBs, PAHs and alkyl PAHs in sediments from the Klip and Jukskei Rivers, South Africa. Environmental Monitoring and Assessment, 189(7), 327. https://doi.org/10.1007/s10661-017-6043-y.

    Article  CAS  Google Scholar 

  • Rocha, M. J., Dores-Sousa, J. L., Cruzeiro, C., & Rocha, E. (2017). PAHs in water and surface sediments from Douro River estuary and Porto Atlantic coast (Portugal)-impacts on human health. Environmental Monitoring and Assessment, 189(8), 425. https://doi.org/10.1007/s10661-017-6137-6.

    Article  CAS  Google Scholar 

  • Shi, Z., Tao, S., Pan, B., Fan, W., He, X. C., Zuo, Q., Wu, S. P., Li, B. G., Cao, J., Liu, W. X., Xu, F. L., Wang, X. J., Shen, W. R., & Wong, P. K. (2005). Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 134(1), 97–111.

    Article  CAS  Google Scholar 

  • Specchiulli, A., Focardi, S., Renzi, M., Scirocco, T., Cilenti, L., Breber, P., & Bastianoni, S. (2008). Environmental heterogeneity patterns and assessment of trophic levels in two Mediterranean lagoons: Orbetello and Varano, Italy. Science of the Total Environment, 402(2–3), 285–298. https://doi.org/10.1016/j.scitotenv.2008.04.052.

    Article  CAS  Google Scholar 

  • Sprovieri, M., Feo, M. L., Prevedello, L., Manta, D. S., Sammartino, S., Tamburrino, S., & Marsella, E. (2007). Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy). Chemosphere, 67(5), 998–1009. https://doi.org/10.1016/j.chemosphere.2006.10.055.

    Article  CAS  Google Scholar 

  • Stakėnienė, R., Jokšas, K., Galkus, A., & Raudonytė-Svirbutavičienė, E. (2016). Aliphatic and polycyclic aromatic hydrocarbons in the bottom sediments from Klaipėda Harbour, Lithuania (Baltic Sea). Chemistry and Ecology, 32(4), 357–377. https://doi.org/10.1080/02757540.2016.1142977.

    Article  CAS  Google Scholar 

  • Staniszewska, M., Boniecka, H., & Gajecka, A. (2013). Organochlorine, organophosphoric and organotin contaminants, aromatic and aliphatic hydrocarbons and heavy metals in sediments of the ports from the polish part of the Vistula Lagoon (Baltic Sea). Soil and Sediment Contamination: An International Journal, 22(2), 151–173. https://doi.org/10.1080/15320383.2013.722137.

    Article  CAS  Google Scholar 

  • Suzdalev, S. (2015). Hazardous substances distribution and geochemical anomalies in the surface sediments of a heavily modified water body Klaipėda University, Klaipėda.

  • Tavares, M., Pinto, J. P., Souza, A. L., Scarmínio, I. S., & Cristina Solci, M. (2004). Emission of polycyclic aromatic hydrocarbons from diesel engine in a bus station, Londrina, Brazil. Atmospheric Environment, 38(30), 5039–5044. https://doi.org/10.1016/j.atmosenv.2004.06.020.

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025.

    Article  CAS  Google Scholar 

  • Tsibart, A., Gennadiev, A., Koshovskii, T., & Watts, A. (2014). Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia). Solid Earth, 5(2), 1305–1317.

    Article  Google Scholar 

  • Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. (2014). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, 11–14. https://doi.org/10.1038/ngeo2325.

    Article  CAS  Google Scholar 

  • US EPA. (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons, EPA/600/R-93/089. Washington, DC: Office of Research and Development, US Environment Protection Agency.

    Google Scholar 

  • Wang, Z., Fingas, M., & Page, D. S. (1999). Oil spill identification. Journal of Chromatography A, 843(1), 369–411. https://doi.org/10.1016/S0021-9673(99)00120-X.

    Article  CAS  Google Scholar 

  • Wang, M., Wang, C., Hu, X., Zhang, H., He, S., & Lv, S. (2015). Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China. Marine Pollution Bulletin, 90(1–2), 88–94. https://doi.org/10.1016/j.marpolbul.2014.11.017.

    Article  CAS  Google Scholar 

  • Yamamoto, M., & Polyak, L. (2009). Changes in terrestrial organic matter input to the Mendeleev Ridge, western Arctic Ocean, during the Late Quaternary. Global and Planetary Change, 68(1), 30–37. https://doi.org/10.1016/j.gloplacha.2009.03.012.

    Article  Google Scholar 

  • Yu, W., Liu, R., Xu, F., Men, C., & Shen, Z. (2016). Identifications and seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River Estuary, China. Marine Pollution Bulletin, 104(1), 347–354. https://doi.org/10.1016/j.marpolbul.2016.01.036.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5.

    Article  CAS  Google Scholar 

  • Zareckas, S., Galkus, A., & Jokšas, K. (1994). Problematic aspects of Nemunas River load monitoring. In R. Thurston (Ed.), Environmental studies in the Nemunas River basin, Lithuania Bozeman. Montana: Montana State University.

    Google Scholar 

  • Žaromskis, R. (1996). Oceans, seas, estuaries (in Lithuanian). Vilnius: Debesija.

    Google Scholar 

  • Zettler, M. L., & Daunys, D. (2007). Long-term macrozoobenthos changes in a shallow boreal lagoon: comparison of a recent biodiversity inventory with historical data. Limnologica - Ecology and Management of Inland Waters, 37(2), 170–185. https://doi.org/10.1016/j.limno.2006.12.004.

    Article  Google Scholar 

  • Zhao, M., Wang, W., Liu, Y., Dong, L., Jiao, L., Hu, L., & Fan, D. (2016). Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Bering Sea and western Arctic Ocean. Marine Pollution Bulletin, 104(1–2), 379–385. https://doi.org/10.1016/j.marpolbul.2016.01.016.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Open Access to research infrastructure of the Nature Research Center under Lithuanian open access network initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Raudonytė-Svirbutavičienė.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stakėnienė, R., Jokšas, K., Galkus, A. et al. Polycyclic aromatic hydrocarbons in surface sediments from the Curonian Lagoon and the Nemunas River Delta (Lithuania, Baltic Sea): distribution, origin, and suggestions for the monitoring program. Environ Monit Assess 191, 212 (2019). https://doi.org/10.1007/s10661-019-7367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7367-6

Keywords

Navigation