Skip to main content
Log in

Ecotoxicity evaluation and human risk assessment of an agricultural polluted soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study aims to evaluate the nature and level of chemical pollution as well as the potential toxicity and ecotoxicity of an agricultural soil irrigated by the water of Litani River. Our findings showed that the soil was mainly contaminated by alkanes (hentriacontane, octadecane, hexadecane) and metal trace elements (nickel, vanadium, chromium, and manganese). Soil organic extracts showed high cytotoxicity against human hepatic (HepG2) and bronchial epithelial cells (Beas-2B). Soil ecotoxicity was revealed by seed germination inhibition of several plant species (wheat, clover, alfalfa, tall fescue, and ryegrass) ranging from 7 to 30% on the polluted soil compared to non-polluted one. In addition, significant decreases in telluric microbial biomasses (bacterial and fungal biomasses), quantified by phospholipid fatty acids (PLFA) analysis were observed in polluted soil compared to non-contaminated soils. The density of the arbuscular mycorrhizal fungal (AMF) spores isolated from the polluted soil was about 316 spores/100 g. Three main AMF species were identified as Funelliformis mosseae, Septoglomus constrictum, and Claroideoglomus lamellosum. Moreover, 16 indigenous plant species were inventoried with Silybum marianum L. as the dominant one. Plant biodiversity indices (Shannon, Simpson, Menhinick, and Margaleff) were lower than those found in other contaminated soils. Finally, it was found that all the present plant species on this polluted site were mycorrhized, suggesting a possible protection of these plants against encountered pollutants, and the possibility to use AMF-assisted phytoremediation to clean-up such a site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2002). Influence of diesel fuel on seed germination. Environmental Pollution, 120(2), 363–370. https://doi.org/10.1016/S0269-7491(02)00119-7.

    Article  CAS  Google Scholar 

  • AFNOR. (1999). Recueil De Normes Françaises. In Qualité Des Sols. Paris: Afnor.

    Google Scholar 

  • Albro, P. W., & Fishbein, L. (1970). Absorption of aliphatic hydrocarbons by rats. Biochimica et Biophysica Acta, 219, 437–446. https://doi.org/10.1007/SpringerReference_211540.

    Article  CAS  Google Scholar 

  • Alexander, M. (1995). How toxic are toxic chemicals in soil? Environmental Science & Technology, 29, 2713–2717. https://doi.org/10.1021/es00011a003.

    Article  CAS  Google Scholar 

  • Alrumman, S. A., Standing, D. B., & Paton, G. I. (2015). Effects of hydrocarbon contamination on soil microbial community and enzyme activity. Journal of King Saud University - Science, 27, 31–41. https://doi.org/10.1016/j.jksus.2014.10.001.

    Article  Google Scholar 

  • Ambolet-Camoit, A., Ottolenghi, C., Leblanc, A., Kim, M. J., Letourneur, F., Jacques, S., Cagnard, N., Guguen-Guillouzo, C., Barouki, R., & Aggerbeck, M. (2015). Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism. Biochimie, 116, 79–91. https://doi.org/10.1016/j.biochi.2015.07.003.

    Article  CAS  Google Scholar 

  • An, Y. J. (2004). Soil ecotoxicity assessment using cadmium sensitive plants. Environmental Pollution, 127, 21–26. https://doi.org/10.1016/S0269-7491(03)00263-X.

    Article  CAS  Google Scholar 

  • Andreoni, V., Cavalca, L., Rao, M. A., Nocerino, G., Bernasconi, S., Dell’Amico, E., Colombo, M., & Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 57, 401–412. https://doi.org/10.1016/j.chemosphere.2004.06.013.

    Article  CAS  Google Scholar 

  • Bååth, E., Frostegård, Å., & Fritze, H. (1992). Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Applied and Environmental Microbiology, 58(12), 4026–4031.

    Google Scholar 

  • Baderna, D., Maggioni, S., Boriani, E., Gemma, S., Molteni, M., Lombardo, A., Colombo, A., Bordonali, S., Rotella, G., Lodi, M., & Benfenati, E. (2011). A combined approach to investigate the toxicity of an industrial landfill’s leachate: Chemical analyses, risk assessment and in vitro assays. Environmental Research, 111, 603–613. https://doi.org/10.1016/j.envres.2011.01.015.

    Article  CAS  Google Scholar 

  • Baderna, D., Colombo, A., Amodei, G., Cantù, S., Teoldi, F., Cambria, F., Rotella, G., Natolino, F., Lodi, M., & Benfenati, E. (2013). Chemical-based risk assessment and in vitro models of human health effects induced by organic pollutants in soils from the Olona valley. Science of the Total Environment, 463–464, 790–801. https://doi.org/10.1016/j.scitotenv.2013.06.088.

    Article  CAS  Google Scholar 

  • Barrowman, J. A., Rahman, A., Lindstrom, M. B., & Borgstrom, B. (1989). Intestinal absorption and metabolism of hydrocarbons. Progress in Lipid Research, 28, 189–203. https://doi.org/10.1016/0163-7827(89)90012-X.

    Article  CAS  Google Scholar 

  • Bebianno, M. J., Pereira, C. G., Rey, F., Cravo, A., Duarte, D., D’Errico, G., & Regoli, F. (2015). Integrated approach to assess ecosystem health in harbor areas. Science of the Total Environment, 514, 92–107. https://doi.org/10.1016/J.SCITOTENV.2015.01.050.

    Article  CAS  Google Scholar 

  • Bencherif, K., Boutekrabt, A., Fontaine, J., Laruelle, F., Dalpé, Y., & Lounès-Hadj Sahraoui, A. (2015). Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Science of the Total Environment, 533, 488–494. https://doi.org/10.1016/j.scitotenv.2015.07.007.

    Article  CAS  Google Scholar 

  • Bhogal, A., Nicholson, F. A., & Chambers, B. J. (2009). Organic carbon additions: effects on soil bio-physical and physico-chemical properties. European Journal of Soil Science, 60(2), 276–286. https://doi.org/10.1111/j.1365-2389.2008.01105.x.

    Article  CAS  Google Scholar 

  • Braun-Blanquet, J. (1951). Pflanzensoziologie. In Grundzüge der Vegetationskunde. Wien: Springer.

    Google Scholar 

  • Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Bewley, R. J. F., Graham, M. C., Ngwenya, B. T., & Farmer, J. G. (2010). Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Science of the Total Environment, 409, 267–277. https://doi.org/10.1016/j.scitotenv.2010.09.007.

    Article  CAS  Google Scholar 

  • Bou Kheir, R., Greve, M. H., Abdallah, C., & Dalgaard, T. (2010). Spatial soil zinc content distribution from terrain parameters: A GIS-based decision-tree model in Lebanon. Environmental Pollution, 158(2), 520–528

    Article  CAS  Google Scholar 

  • Cabello, M. N. (1997). Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiology Ecology, 22, 233–236. https://doi.org/10.1111/j.1574-6941.1997.tb00375.x.

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment. (2008). Canada-wide standard for petroleum hydrocarbons (PHC) in soil user guidance.

  • Chaîneau, C. H., Yepremian, C., Vidalie, J. F., Ducreux, J., & Ballerini, D. (2003). Bioremediation of a crude oil-polluted soil: Biodegradation, leaching and toxicity assessments. Water, Air, and Soil Pollution, 144, 419–440. https://doi.org/10.1023/A:1022935600698.

    Article  Google Scholar 

  • Chalhoub, M., Vachier, P., Coquet, Y., Darwish, T., Dever, L., & Mroueh, M. (2009). Caractérisation des propriétés hydrodynamiques d’un sol de la Bekaa (Liban) sur les rives du fleuve Litani. Etude et Gestion des Sols, 16(2), 67–84.

    Google Scholar 

  • Chou, C.-C., Riviere, J. E., & Monteiro-Riviere, N. A. (2002). Differential relationship between the carbon chain length of jet fuel aliphatic hydrocarbons and their ability to induce cytotoxicity vs. interleukin-8 release in human epidermal keratinocytes. Toxicological Sciences, 69, 226–233. https://doi.org/10.1093/toxsci/69.1.226.

    Article  CAS  Google Scholar 

  • Ciesielski, H., & Sterckeman, T. (1997). A comparison between three methods cation exchange capacity and exchangeable cations in soils. Agronomie, 17, 9–15.

    Article  Google Scholar 

  • Darwish, T., Atallah, T., Francis, R., Saab, C., Jomaa, I., Shaaban, A., Sakka, H., & Zdruli, P. (2011). Observations on soil and groundwater contamination with nitrate: a case study from Lebanon-East Mediterranean. Agricultural Water Management, 99, 74–84. https://doi.org/10.1016/j.agwat.2011.07.016.

    Article  Google Scholar 

  • Deng, L., Wang, K., Li, J., Zhao, G., & Shangguan, Z. (2016). Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the Loess Plateau, China. Ecological Engineering, 94, 525–531. https://doi.org/10.1016/j.ecoleng.2016.06.048.

    Article  Google Scholar 

  • Dergham, M., Lepers, C., Verdin, A., Billet, S., Cazier, F., Courcot, D., Shirali, P., & Garcon, G. (2012). Prooxidant and proinflammatory potency of air pollution particulate matter (PM2.5-0.3) produced in rural, urban, or industrial surroundings in human bronchial epithelial cells (BEAS-2B). Chemical Research in Toxicology, 25, 904–919. https://doi.org/10.1021/tx200529v.

    Article  CAS  Google Scholar 

  • Dergham, M., Lepers, C., Verdin, A., Cazier, F., Billet, S., Courcot, D., Shirali, P., & Garçon, G. (2015). Temporal-spatial variations of the physicochemical characteristics of air pollution Particulate Matter (PM2.5-0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B). Environmental Research, 137, 256–267. https://doi.org/10.1016/j.envres.2014.12.015.

    Article  CAS  Google Scholar 

  • Driai, S. (2016). Impact des polluants d’origine industrielle sur le développement des champignons mycorhiziens à arbuscules, sur leur diversité et sur la viabilité microbienne des sols des agro-écosystèmes du Nord-est algérien. Université BADJI MOKHTAR-ANNABA.

  • Dvořák, Z., Kosina, P., Walterová, D., Šimánek, V., Bachleda, P., & Ulrichová, J. (2003). Primary cultures of human hepatocytes as a tool in cytotoxicity studies: cell protection against model toxins by flavonolignans obtained from Silybum marianum. Toxicology Letters, 137(3), 201–212. https://doi.org/10.1016/S0378-4274(02)00406-X.

    Article  Google Scholar 

  • El-Fadel, M., Maroun, R., Bsat, R., Makki, M., Reiss, P., & Rothberg, D. (2003). Water quality assessment of the upper Litani River basin and Lake Qaraoun-Lebanon. Integrated Water and Coastal Resources Management-Indefinite Quantity Contract. Bureau for Asia and the Near East. Washington, DC: US Agency for International Development, p. 77.

  • Fernandez, M. D., Cagigal, E., Vega, M., Urzelai, A., Babin, M., Pro, J., & Tarazona, J. V. (2005). Ecological risk assessment of contaminated soils through direct toxicity assessment. Ecotoxicology and Environmental Safety, 62, 174–184. https://doi.org/10.1016/j.ecoenv.2004.11.013.

    Article  CAS  Google Scholar 

  • Frostegård, Å., Tunlid, A., & Bååth, E. (1991). Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 14, 151–163. https://doi.org/10.1016/0167-7012(91)90018-L.

  • Forbes, V.E., Forbes, T.L., (1994). Ecotoxicology in theory and practice, illustrate. ed. London: Chapman & Hall Ecotoxicology.

  • Frostegård, A., Tunlid, A., & Bååth, E. (1993). Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology, 59(11), 3605–3617.

    Google Scholar 

  • Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235–244. https://doi.org/10.1016/S0007-1536(63)80079-0.

    Article  Google Scholar 

  • Greene, J. C., Bartels, C. L., Warren-Hicks, W. J., Parkhurst, B. R., Linder, G. L., Peterson, S. A., & Miller, W. E. (1989). Protocols for Short-Term Toxicity Screening of Hazardous Waste Sites., EPA/600/3-88/029. Corvallis: Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.

    Google Scholar 

  • Gong, P. (2001). Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils. Chemosphere, 44, 491–500.

    Article  CAS  Google Scholar 

  • Hassan, S. E.-D., Boon, E., St-Arnaud, M., & Hijri, M. (2011). Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Molecular Ecology, 20(16), 3469–3483. https://doi.org/10.1111/j.1365-294X.2011.05142.x.

    Article  CAS  Google Scholar 

  • Hernández, A. J., & Pastor, J. (2008). Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine. Environmental Geochemistry and Health, 30, 127–133. https://doi.org/10.1007/s10653-008-9150-4.

    Article  CAS  Google Scholar 

  • Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68(1), 139–146. https://doi.org/10.1016/j.phytochem.2006.09.023.

    Article  CAS  Google Scholar 

  • Huang, J., Tang, M., Niu, Z., & Zhang, R. (2007). Arbuscular mycorrhizal fungi in petroleum-contaminated soil in Suining area of Sichuan Province. Chinese Journal of Ecology, 9, 14.

    Google Scholar 

  • Huseini, H. F., Larijani, B., Heshmat, R., Fakhrzadeh, H., Radjabipour, B., Toliat, T., & Raza, M. (2006). The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Phytotherapy Research, 20(12), 1036–1039. https://doi.org/10.1002/ptr.1988.

    Article  CAS  Google Scholar 

  • Hawley, J. K. (1985). Assessment of health risk from exposure to contaminated soil. Risk Analysis, 5, 289–302.

    Article  CAS  Google Scholar 

  • INERIS. (2012). Réutilisation des terres excavées sur des projets d’aménagement : élaboration des seuils vis-à-vis des risques sanitaires. http://www.installationsclassees.developpementdurable.gouv.fr/IMG/pdf/ERS_terres_excavees_INERIS-DRC-11-115719-09274C-2.pdf. 21 Nov 2017.

  • ISO. (1999). Soil Quality. Guidance on the ecotoxicological characterisation of soils and soil materials. Guidelines no ISO TC 190/ SC 7 ISO/DIS 15799. Geneva: ISO.

    Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41, 2031–2037. https://doi.org/10.1016/j.soilbio.2009.04.026.

    Article  CAS  Google Scholar 

  • Karthik, D., Vijayarekha, K., & Manickkam, V. (2014). Land characterizations based on soil properties using clustering techniques. World Applied Sciences Journal, 29, 60–64. https://doi.org/10.5829/idosi.wasj.2014.29.dmsct.11.

    Article  Google Scholar 

  • Kirk, J. L., Moutoglis, P., Klironomos, J., Lee, H., & Trevors, J. T. (2005). Toxicity of diesel fuel to germination, growth and colonization of Glomus intraradices in soil and in vitro transformed carrot root cultures. Plant and Soil, 270, 23–30. https://doi.org/10.1007/s11104-004-1013-x.

    Article  CAS  Google Scholar 

  • Knox, P., Uphill, P. F., Fry, J. R., Benford, J., & Balls, M. (1986). The frame multicentre project on In vitro cytotoxicology. Food and Chemical Toxicology, 24, 457–463. https://doi.org/10.1016/0278-6915(86)90092-X.

    Article  CAS  Google Scholar 

  • Kumbıçak, Ü., Çavaş, T., Çinkılıç, N., Kumbıçak, Z., Vatan, Ö., & Yılmaz, D. (2014). Evaluation of in vitro cytotoxicity and genotoxicity of copper-zinc alloy nanoparticles in human lung epithelial cells. Food and Chemical Toxicology, 73, 105–112. https://doi.org/10.1016/j.fct.2014.07.040.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Bert, V., Dimitriou, I., Eriksson, J., Friesl-Hanl, W., Galazka, R., Herzig, R., Janssen, J., Kidd, P., Mench, M., Muller, I., Neu, S., Oustriere, N., Puschenreiter, M., Renella, G., Roumier, P.-H., Siebielec, G., Vangronsveld, J., & Manier, N. (2014). Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO). Science of the Total Environment, 496, 510–522. https://doi.org/10.1016/j.scitotenv.2014.06.130.

    Article  CAS  Google Scholar 

  • Kwak, J. I., Kim, S. W., & An, Y.-J. (2014). A new and sensitive method for measuring in vivo and in vitro cytotoxicity in earthworm coelomocytes by flow cytometry. Environmental Research, 134, 118–126. https://doi.org/10.1016/j.envres.2014.07.014.

    Article  CAS  Google Scholar 

  • Labidi, S., Fontaine, J., Laruelle, F., Tisserant, B., Dalpé, Y., Grandmougin-Ferjani, A., Douay, F., & Lounès-Hadj Sahraoui, A. (2015). Fly ash-aided phytostabilisation of highly trace element polluted topsoils improves the telluric fungal biomass: A long-term field experiment. Applied Soil Ecology, 85, 69–75. https://doi.org/10.1016/j.apsoil.2014.09.006.

    Article  Google Scholar 

  • Lenoir, I., Fontaine, J., & Lounès-Hadj Sahraoui, A. (2016a). Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry, 123, 4–15. https://doi.org/10.1016/j.phytochem.2016.01.002.

    Article  CAS  Google Scholar 

  • Lenoir, I., Lounès-Hadj Sahraoui, A., Frédéric, L., Yolande, D., & Joël, F. (2016b). Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil. Environmental Pollution, 213, 549–560. https://doi.org/10.1016/j.envpol.2016.02.056.

    Article  CAS  Google Scholar 

  • Luo, X. S., Ding, J., Xu, B., Wang, Y. J., Li, H. B., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88–96. https://doi.org/10.1016/j.scitotenv.2012.02.053.

    Article  CAS  Google Scholar 

  • Margalef, R. (1958). Information theory in ecology. General Systems, 3, 36–71.

    Google Scholar 

  • Menhinick, E. F. (1964). A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology, 45(4), 859–861. https://doi.org/10.2307/1934933.

    Article  Google Scholar 

  • Motamedi, J., & Souri, M. (2016). Efficiency of numerical and parametrical indices to determine biodiversity inmountain rangelands. Acta Ecologica Sinica, 36, 108–112. https://doi.org/10.1016/j.chnaes.2016.02.001.

    Article  Google Scholar 

  • Mouterde, P. (1966). Nouvelle Flore du Liban et de la Syrie. Tome I. Beyrouth: Dar El-Machreq SARL, p. 563.

  • Mouterde, P. (1970). Nouvelle Flore du Liban et de la Syrie. Tome II. Beyrouth: Dar El-Machreq SARL, p. 720.

  • Mouterde, P. (1983). Nouvelle Flore du Liban et de la Syrie:. Tome III. Beyrouth: Dar El-Machreq SARL, p. 578.

  • Nash, J. F., Gettings, S. D., Diembeck, W., Chudowski, M., & Kraus, A. L. (1996). A toxicological review of topical exposure to white mineral oils. Food and Chemical Toxicology, 34(2), 213–225. https://doi.org/10.1016/0278-6915(95)00106-9.

  • National Health and Medical Research Council, N, (1999). Toxicity assessment for carcinogenic soil contaminants.

  • Oehl, F., Sieverding, E., Mäder, P., Dubois, D., Ineichen, K., Boller, T., & Wiemken, A. (2004). Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia, 138, 574–583. https://doi.org/10.1007/s00442-003-1458-2.

    Article  Google Scholar 

  • Olawoyin, R., Oyewole, S. A., & Grayson, R. L. (2012). Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta. Ecotoxicology and Environmental Safety, 85, 120–130. https://doi.org/10.1016/j.ecoenv.2012.08.004.

    Article  CAS  Google Scholar 

  • Orsini, L., & Remy, J. C. (1976). Utilisation du chlorure de cobaltihexammine pour la determination simultanee de la capacite d’echange et des bases echangeables des sols. Bulletin de l’AFES Science du Sol, 4, 269–275.

    Google Scholar 

  • Ouziad, F., Hildebrandt, U., Schmelzer, E., & Bothe, H. (2005). Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. Journal of Plant Physiology, 162(6), 634–649. https://doi.org/10.1016/j.jplph.2004.09.014.

    Article  CAS  Google Scholar 

  • Petriello, M. C., Hoffman, J. B., Sunkara, M., Wahlang, B., Perkins, J. T., Morris, A. J., & Hennig, B. (2016). Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors. The Journal of Nutritional Biochemistry, 33, 145–153. https://doi.org/10.1016/j.jnutbio.2016.03.016.

    Article  CAS  Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–160. https://doi.org/10.1016/S0007-1536(70)80110-3.

    Article  Google Scholar 

  • Rahman, K. S. M., Rahman, T. J., Kourkoutas, Y., Petsas, I., Marchant, R., & Banat, I. M. (2003). Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 90, 159–168. https://doi.org/10.1016/S0960-8524(03)00114-7.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., & Chappell, W. R. (1999). Advances in evaluation the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology, 33, 3697–3705. https://doi.org/10.1021/es990479z.

    Article  CAS  Google Scholar 

  • Sánchez-Sampedro, M. A., Fernández-Tárrago, J., & Corchete, P. (2005). Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. Journal of Biotechnology, 119(1), 60–69. https://doi.org/10.1016/J.JBIOTEC.2005.06.012.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1964). The mathematical theory of communication. Urban: The University Of Illinois Press.

    Google Scholar 

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688.

    Article  Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis (3rd ed.). Cambridge: Academic Press.

    Google Scholar 

  • Sýkorová, Z., Ineichen, K., Wiemken, A., & Redecker, D. (2007). The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza, 18(1), 1–14. https://doi.org/10.1007/s00572-007-0147-0.

    Article  CAS  Google Scholar 

  • Taylor, M. P., Mackay, A. K., Hudson-Edwards, K. A., & Holz, E. (2010). Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: Potential sources and risks to human health. Applied Geochemistry, 25, 841–855. https://doi.org/10.1016/j.apgeochem.2010.03.003.

    Article  CAS  Google Scholar 

  • Thavamani, P., Malik, S., Beer, M., Megharaj, M., & Naidu, R. (2012). Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. Journal of Environmental Management, 99, 10–17. https://doi.org/10.1016/j.jenvman.2011.12.030.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency, E.R.L., (1989). Ecological Assessment of Hazardous Waste Sites : A Field and Laboratory. Washington, DC. 20460.

  • US Environmental Protection Agency. (2004). Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessment, Office of Superfund Remediation and Technology Innovation. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • US Environmental Protection Agency, E.R.L., 2007. Method 8290A: Polychlorinated dibenzodioxins and polychlorinated dibenzofurans by high-resolution gas chromatography/high-resolution mass spectrometry.

  • USAID, United States Agency for Internattional Development. (2012). Litani River basin management plan - volume I : Problems and action plan 76p. Available at: http://www.litani.gov.lb/wp/wpcontent/uploads/LRBMS/004-LRBMS-VOLUME%201%20PROBLEMS%20AND%20ACTON%20PLAN-%20ENGLISH.pdf. 21 Nov 2017

  • USDA. (1999). Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys (Second Edi.). Washington, DC: Soil Survey Staff.

    Google Scholar 

  • Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., & Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93, 223–241.

    Article  Google Scholar 

  • Verdin, A., Lounès-Hadj Sahraoui, A., Fontaine, J., Grandmougin-Ferjani, A., & Durand, R. (2006). Effects of anthracene on development of an arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation. Mycorrhiza, 16, 397–405. https://doi.org/10.1007/s00572-006-0055-8.

    Article  CAS  Google Scholar 

  • Xiong, Z. T., Hu, H. X., Wang, Y. X., Fu, G. H., Tan, Z. Q., & Yan, G. A. (1997). Comparative analyses of soil contaminant levels and plant species diversity at developing and disused oil well sites in Qianjiang oilfield, China. Bulletin of Environmental Contamination and Toxicology, 58, 667–672. https://doi.org/10.1007/s001289900385.

    Article  CAS  Google Scholar 

  • Yang, Y., Song, Y., Scheller, H. V., Ghosh, A., Ban, Y., Chen, H., & Tang, M. (2015). Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biology and Biochemistry, 86, 146–158. https://doi.org/10.1016/j.soilbio.2015.03.018.

    Article  CAS  Google Scholar 

  • Zangaro, W., Rostirola, L. V., Carrenho, P. B. d. S., Alves, R. d. A., Lescano, L. E. A. M., Rondina, A. B. L., et al. (2013). Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza, 23(3), 221–233. https://doi.org/10.1007/s00572-012-0464-9.

    Article  Google Scholar 

  • Zelles, L., & Bai, Q. Y. (1993). Fractionation of fatty acids derived from soil lipids by solid phase extraction and their quantitative analysis by GC-MS. Soil Biology and Biochemistry, 25(4), 495–507. https://doi.org/10.1016/0038-0717(93)90075-M.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Natacha Bourdon, Benoit Tisserant and Charbel Ghossein for their technical support.

Funding

This study is financially supported by the Lebanese University and the Université du Littoral Côte d'Opale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane Makhlouf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Alam, I., Verdin, A., Fontaine, J. et al. Ecotoxicity evaluation and human risk assessment of an agricultural polluted soil. Environ Monit Assess 190, 738 (2018). https://doi.org/10.1007/s10661-018-7077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7077-5

Keywords

Navigation