Skip to main content

Advertisement

Log in

Mitigation of sodium risk in a sandy agricultural soil by the use of natural zeolites

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Na+ contamination of irrigation waters represents a global environmental issue for soil structure and plant production. Notwithstanding several techniques for the reduction of Na+ have been proposed in recent years, they generally exhibit disadvantages, including low recyclability and relatively high operational/maintenance costs. In this paper, we propose a natural and eco-friendly solution for the reduction of Na+ risk in coastal agricultural sandy soil (SS), vulnerable to salinity stress. A series of column leaching experiments have been conducted to assess the influence of Italian zeolite-rich tuff (natural zeolites, NZ) addition to soil (NZSS) on Na+ removal, SAR, and CROSS index, under three different salinity scenario. Result showed that the Na+ removal efficiency varied between 46.4 and 54.3% in soil amended with NZ, and analogously SAR index was significantly reduced from 7 to up 13 points. SAR and CROSS indexes resulted better correlated in SS rather than NZSS due to the influence of K+ released by NZ. In conclusion, soil amendment with NZ represents a natural and eco-friendly solution for increasing sandy soil resilience to Na+ risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BD:

Bulk density

BW:

Brackish water

BWa:

Brackish water having EC = 5 mS cm−1

BWb:

Brackish water having EC = 10 mS cm−1

BWc:

Brackish water having EC = 18 mS cm−1

CEC:

Cation exchange capacity

Ce :

Ions concentration at equilibrium

C0 :

Ions concentration in the filling solution

CROSS:

Cations ratio of soil structural stability

EC:

Electrical conductivity

NZ:

Natural zeolitite

NZSS:

Sandy soil + 10 wt% of natural zeolitite

OM:

Organic matter

PV:

Pore volume

Qe :

Amount of ions retained/released by the exchanger solid phase

RE %:

Removal efficiency (%)

SAR:

Sodium adsorption ratio

SS:

Sandy soil

TDS:

Total dissolved salts

References

  • Agassi, M., Shainberg, I., & Morin, J. (1981). Effect of electrolyte concentration and soil sodicity on infiltration rate and crust formation. Soil Science Society of America Journal, 48, 848–851.

    Article  Google Scholar 

  • Ayers, R. S., Westcot, D. W. (1994). Water quality for agriculture. FAO irrigation and frainage paper, 29 Rev. 1. Food and Agriculture Organization of the United Nations Rome, 1985 © FAO. ISBN 92-5-102263-1.

  • Bear, J., Cheng, A. H. D., Sorek, S., Ouazar, D., & Herrera, I. (1999). In J. Bear, A. H. D. Cheng, S. Sorek, D. Ouazar, & I. Herrera (Eds.), Seawater intrusion in coastal aquifers: concepts, methods and practices (Vol. 14) (p. 627). Springer Science & Business Media.

  • Bouwer, H. (2002). Integrated water management for the 21st century: problems and solutions. Journal of Irrigation and Drainage Engineering, 128, 193–202.

    Article  Google Scholar 

  • Chen, Y., Banin, A., & Borochovitch, A. (1983). Effect of potassium on soil structure in relation to hydraulic conductivity. In E. B. A. Bisdom & J. Ducloux (Eds.), Submicroscopic studies of soils (pp. 135–147). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Colombani, N., & Mastrocicco, M. (2017). Modelling the salinization of a coastal lagoon-aquifer system. IOP Conference Series: Earth and Environmental Science, 82(1), 012003.

    Article  Google Scholar 

  • Colombani, N., Mastrocicco, M., Di Giuseppe, D., Faccini, B., & Coltorti, M. (2015). Batch and column experiments on nutrient leaching in soils amended with Italian natural zeolitites. Catena, 127, 64–71.

    Article  CAS  Google Scholar 

  • Cramer, G. R., Läuchli, A., & Polito, V. S. (1985). Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiology, 79, 207–211.

    Article  CAS  Google Scholar 

  • Di Giuseppe, D., Faccini, B., Mastrocicco, M., Colombani, N., & Coltorti, M. (2014). Reclamation influence and background geochemistry of neutral saline soils in the Po River Delta plain (northern Italy). Environment and Earth Science, 72, 2457–2473.

    Article  Google Scholar 

  • El Swaify, S. A., Ahmed, S., & Swindale, L. D. (1970). Effects of adsorbed cations on physical properties of tropical red and tropical black earths. Journal of Soil Science, 21, 188–198.

    Article  Google Scholar 

  • Eslami, M., Khorassani, R., Coltorti, M., Malferrari, D., Faccini, B., Ferretti, G., Di Giuseppe, D., Fotovat, A., Halajnia, A. (2018). Leaching behaviour of a sandy soil amended with natural and NH4 + and K+ saturated clinoptilolite and chabazite. Archives of Agronomy and Soil Science, 64, 1142–1151.

    Article  Google Scholar 

  • Faccini, B., Di Giuseppe, D., Ferretti, G., Coltorti, M., Colombani, N., & Mastrocicco, M. (2018). Natural and NH4 +-enriched zeolitite amendment effects on nitrate leaching from a reclaimed agricultural soil (Ferrara Province, Italy). Nutrient Cycling in Agroecosystems, 110, 327–341.

    Article  CAS  Google Scholar 

  • Ferguson, G., & Gleeson, T. (2012). Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change, 2, 342–345.

    Article  Google Scholar 

  • Ferretti, G., Di Giuseppe, D., Natali, C., Faccini, B., Bianchini, G., & Coltorti, M. (2017a). C-N elemental and isotopic investigation in agricultural soils: insights on the effects of zeolitite amendments. Chemie der Erde-Geochemistry, 77(1), 45–52.

    Article  CAS  Google Scholar 

  • Ferretti, G., Keiblinger, M. K., Zimmermann, M., Di Giuseppe, D., Faccinni, B., Colombani, N., Mentler, A., Zechmeister-Boltenstern, S., Coltorti, M., & Mastrocicco, M. (2017b). High resolution short-term investigation of soil CO2, N2O, NOx and NH3 emissions after different chabazite zeolite amendments. Applied Soil Ecology, 119, 138–144.

    Article  Google Scholar 

  • Ferretti, G., Keiblinger, M. K., Di Giuseppe, D., Faccini, B., Colombani, N., Zechmeister-Boltenstern, S., Coltorti, M., & Mastrocicco, M. (2018). Short-term response of soil microbial biomass to different chabazite zeolite amendments. Pedosphere, 28, 277–287.

    Article  Google Scholar 

  • Galli, E., & Passaglia, E. (2011). Natural zeolites in environmental engineering. In H. Holzapfel (Ed.), Zeolites in chemical engineering (pp. 392–416). Vienna: Process Eng EngineeringGmbH.

    Google Scholar 

  • Ghaly, A. E., Verma, M. (2008). Desalination of saline sludges using ion-exchange column with zeolite. American Journal of Environmental Sciences, 4(4), 388–396.

    Article  CAS  Google Scholar 

  • Ghiglieri, G., Carletti, A., & Pittalis, D. (2012). Analysis of salinization processes in the coastal carbonate aquifer of Porto Torres (NW Sardinia, Italy). Journal of Hydrology, 432(43–51), 432–433.

    Google Scholar 

  • Gottardi, G., & Obradovic, J. (1978). Sedimentary zeolites in Europe. Fortschritte der Mineralogie, 56, 316–366.

    CAS  Google Scholar 

  • Han, D., Kohfahl, C., Song, X., Xiao, G., & Yang, J. (2011). Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China. Applied Geochemistry, 26, 863–883.

    Article  CAS  Google Scholar 

  • Hanson, B., Grattan, S. R., & Fulton, A. (1999). Agricultural salinity and drainage. Davis: University of California Irrigation Program. University of California.

    Google Scholar 

  • Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175, 247–252.

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2007). World Reference Base for soil resources 2006, First update 2007. World Soil Resources Reports. (FAO publication, no. 103).

  • Leyva-Ramos, R., Monsivais-Rocha, J. E., Aragon-Piña, A., Berber-Mendoza, M. S., Guerrero-Coronado, R. M., Alonso-Davila, P., & Mendoza-Barron, J. (2010). Removal of ammonium from aqueous solution by ion exchange on natural and modified Chabazite. Journal of Environmental Management, 91, 2662–2668.

    Article  CAS  Google Scholar 

  • Malferrari, D., Laurora, A., Brigatti, F., Coltorti, M., Di Giuseppe, D., Faccini, B., & Vezzalini, M. (2013). Open-field experimentation of an innovative and integrated zeolitite cycle: project definition and material characterization. Rend Fis acc Lincei, 24, 141–150.

    Article  Google Scholar 

  • Marcum, K. B. (2006). Use of saline and non-potable water in the turfgrass industry: constraints and developments. Agricultural Water Management, 80, 132–146.

    Article  Google Scholar 

  • Matschonat, G., & Vogt, R. (1997). Effects of changes in pH, ionic strength, and sulphate concentration on the CEC of temperate acid forest soils. European Journal of Soil Science, 48, 163–171.

    Article  CAS  Google Scholar 

  • Miller, R. W., & Donahue, R. L. (1995). Soils in our environment, Seventh Edition (p. 323). Englewood Cliffs: Prudence Hall.

    Google Scholar 

  • Misaelides, P. (2011). Application of natural zeolites in environmental remediation: a short review. Microporous and Mesoporous Materials, 144, 15–18.

    Article  CAS  Google Scholar 

  • Mumpton, A. (1999). La roca magica: uses of natural zeolites in agriculture and industry. PNAS, 96, 3463–3470.

    Article  CAS  Google Scholar 

  • Passaglia, E. (2008). Zeoliti naturali, zeolititi e loro applicazioni. Padova: Arvan (in Italian).

    Google Scholar 

  • Passaglia, E., Poppi, S., Azzolini, P., & Gualtieri, A. F. (2005). Reduction of the Na content of irrigation waters using chabazite rich tuff. Studies in Surface Science and Catalysis, 158, 2097–2104.

    Article  Google Scholar 

  • Pond, W. G., & Mumpton, F. A. (1984). Zeo-agriculture: use of natural zeolite in agriculture. Boulder: Westview Press.

    Google Scholar 

  • Postel, S. L., Daily, G. C., & Ehrlich, P. R. (1996). Human appropriation of renewable fresh water. Science, 271, 785–788.

    Article  CAS  Google Scholar 

  • Reháková, M., Čuvanová, S., Dzivák, M., Rimár, J., & Gaval’ová, Z. (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science, 8, 397–404.

    Article  Google Scholar 

  • Rengasamy, P., & Marchuk, A. (2011). Cation ratio of soil structural stability (CROSS). Australian Journal of Soil Research, 49, 280–285.

    Article  Google Scholar 

  • Sola, F., Vallejos, A., Daniele, L., & Pulido-Bosch, A. (2014). Identification of a Holocene aquifer–lagoon system using hydrogeochemical data. Quat. Res, 82(1), 121–131.

    Article  CAS  Google Scholar 

  • Stefani, M., & Vincenzi, S. (2005). The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Marine Geology, 222, 19–48.

    Article  Google Scholar 

  • Taiz, L., & Zeiger, E. (2007). Plant physiology. Spektrum Akademischer Verlag.

  • Tiessen, H., & Moir, J. O. (1993). Total organic carbon. In M. E. Cater (Ed.), Soil sampling and methods analysis (pp. 187–200). Ann Arbor: Lewis Publisher.

    Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.

    Article  CAS  Google Scholar 

  • Torracca, E., Galli, P., Pansini, M., & Colella, C. (1998). Cation exchange reaction of a sedimentary chabazite. Microporous and Mesoporous Materials, 20, 119–127.

    Article  CAS  Google Scholar 

  • Wang, Y. F., Ling, F., & Pang, W. Q. (2007). Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite. Journal of Hazardous Material, 142, 160–164.

    Article  CAS  Google Scholar 

  • Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., & Barry, D. A. (2013). Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour, 51, 3–26.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Renzo Tassinari for laboratory analysis.

Funding

This study has been funded by Bando 2012 per progetti di ricerca finanziati con il contributo della Camera di Commercio, Industria, Artigianato e Agricoltura” grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Faccini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferretti, G., Di Giuseppe, D., Faccini, B. et al. Mitigation of sodium risk in a sandy agricultural soil by the use of natural zeolites. Environ Monit Assess 190, 646 (2018). https://doi.org/10.1007/s10661-018-7027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7027-2

Keywords

Navigation