Abstract
Coastal lagoon ecosystems are vulnerable to eutrophication, which leads to the accumulation of nutrients from the surrounding watershed over the long term. However, there is a lack of information about methods that could accurate quantify this problem in rapidly developed countries. Therefore, various statistical methods such as cluster analysis (CA), principal component analysis (PCA), partial least square (PLS), principal component regression (PCR), and ordinary least squares regression (OLS) were used in this study to estimate total organic matter content in sediments (TOM) using other parameters such as temperature, dissolved oxygen (DO), pH, electrical conductivity (EC), nitrite (NO2), nitrate (NO3), biological oxygen demand (BOD), phosphate (PO4), total phosphorus (TP), salinity, and water depth along a 3-km transect in the Gomishan Lagoon (Iran). Results indicated that nutrient concentration and the dissolved oxygen gradient were the most significant parameters in the lagoon water quality heterogeneity. Additionally, anoxia at the bottom of the lagoon in sediments and re-suspension of the sediments were the main factors affecting internal nutrient loading. To validate the models, R2, RMSECV, and RPDCV were used. The PLS model was stronger than the other models. Also, classification analysis of the Gomishan Lagoon identified two hydrological zones: (i) a North Zone characterized by higher water exchange, higher dissolved oxygen and lower salinity and nutrients, and (ii) a Central and South Zone with high residence time, higher nutrient concentrations, lower dissolved oxygen, and higher salinity. A recommendation for the management of coastal lagoons, specifically the Gomishan Lagoon, to decrease or eliminate nutrient loadings is discussed and should be transferred to policy makers, the scientific community, and local inhabitants.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- BOD:
-
Biochemical oxygen demand
- CA:
-
Cluster analysis
- DO:
-
Dissolved oxygen
- EC:
-
Electrical conductivity
- FA:
-
Factor analyses
- NO2 − :
-
Nitrite
- NO3 − :
-
Nitrate
- OLS:
-
Ordinary least squares regression
- PCA:
-
Principal component analyses
- PCR:
-
Principal component regression
- PLS:
-
Partial least squares
- SRP:
-
Soluble reactive phosphorus
- Temp:
-
Temperature
- TOM:
-
Total organic matter
- TP:
-
Total phosphorus
References
Allen, G., Mandelli, E., & Zimmermann, J. P. F., 1981. Coastal lagoon research, present and future: proceedings of a seminar. Physics, geology, chemistry in P. Lasserre and H. Postma, editors. UNESCOUnited Nations Educational, Scientific, and Cultural Organization (vol 32, pp 29–50), Technical Papers in Marine Science.
Andersen, D. C., Sartoris, J. J., Thullen, J. S., & Reusch, P. G. (2003). The effects of bird use on nutrient removal in a constructed wastewater-treatment wetland. Wetlands, 23(2), 423–435.
Argaman, E., Keesstra, S. D., & Zeiliguer, A. (2012). Monitoring the impact of surface albedo on a saline lake in SW Russia. Land Degradation & Development, 23(4), 398–408.
Barannik, V., Borysova, O., & Stolberg, F. (2004). The Caspian Sea region environmental change. Royal Swedish Academy of Sciences, AMBIO, 33(1–2), 45–51.
Basatnia, N., Hosseini, S. A., & Muniz, P. (2015). Performance comparison of biotic indices measuring the ecological status base on soft-bottom macroinvertebrates: a study along the shallow Gomishan lagoon (Southeast Caspian Sea). Brazilian Journal of Oceanography., 63(4), 363–378. https://doi.org/10.1590/S1679-87592015074606304.
Brevik, E. C. (2012). Soils and climate change: gas fluxes and soil processes. Soil Horizons, 53(4), 12–23. https://doi.org/10.2136/sh12-04-0012.
Brevik, E. C., & Homburg, J. (2004). A 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. Catena, 57(3), 221–232.
Brevik, E. C., Calzolari, C., Miller, B. A., Pereira, P., Kabala, C., Baumgarten, A., & Jordán, A. (2016). Soil mapping, classification, and modeling: history and future directions. Geoderma, 264, 256–274.
Cao, W., Zhang, H., Wang, Y., & Pan, J. (2012). Bioremediation of polluted surface water by using biofilms on filamentous bamboo. Ecological Engineering, 42, 146–149.
Cattell, R. B., & Jaspers, J. (1967). A general plasmode (no. 30-10-5-2) for factor analytic exercises and research. Multivariate Behavioral Research Monographs, 67, 1–212.
Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnology Advances, 33, 745–755.
Clesceri, S. L., Greenberg, E. A., & Trussell, R. R. (Eds.). (1989). Standard methods for the examination of water and wastewater. Washington DC: APHA and WPCF.
Draper, N. R., & Smith, H. (1981). Applied regression analysis. New York: Wiley.
Economic Commission of Europe [ECE]. (2011). Second assessment of transboundary rivers, lakes and groundwaters. Geneva: United Nations.
Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., & Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135–1142.
Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metals sources in soils. Environmental Pollution, 114, 313–324.
Fan, X., Cui, B., Zhao, H., Zhang, Z., & Zhang, H. (2010). Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environmental Sciences, 2, 1220–1234.
Fekedulegn, B. D., Colbert, J. J., Hicks Jr., R. R., & Schuckers, M. (2002). Coping with multicollinearity: An example on application of principal components regression in dendroecology (pp. 43). U.S. Department of Agriculture, Forest Service.
Feng, T., Wei, W., Chen, L., Rodrigo-Comino, J., Die, C., Feng, X., Ren, K., Brevik, E. C. (2018). Assessment of the impact of different vegetation patterns on soil erosion processes on semiarid loess slopes. Earth Surface Processes and Landforms. In press. https://doi.org/10.1002/esp.4361.
Ferrarin, C., & Umgiesser, G. (2005). Hydrodynamic modeling of a coastal lagoon: the cobras lagoon in Sardinia, Italy. Ecological Modeling, 188, 340–357.
Gandomi, Y., Shadi, A., & Savari, A. (2011). Classification of Gomishan Lagoon (Caspian Sea, Iran) by Using the Coastal and Marine Ecological Classification Standard (CMECS). Middle-East Journal of Scientific Research, 8(3), 611–615.
Gangopadhyay, S., Gupta, A. D., & Nachabe, M. H. (2001). Evaluation of ground water monitoring network by principal component analysis. Ground Water, 39, 181–191.
Geta, R., Postolache, C., & Vadineamu, A. (2004). Ecological significance of nitrogen cycling by tubificid communities in shallow eutrophic lakes of the Danube Delta. Hydrobiologia, 524, 193–202.
Ghaemi, R. (2006). Shorebirds of the wetland of Gomishan, Iran. Wader Study Group Bulletin, 109, 102–105.
Golterman, H. (2004). The chemistry of phosphate and nitrogen compounds in sediments. Netherlands: Kluwer Academic Publishers.
González, F. U. T., Herrera-Silveira, J. A., & Aguirre-Macedo, M. L. (2008). Water quality variability and eutrophic trends in karstic tropical coastal lagoons of the Yucatán Peninsula. Estuarine, Coastal and Shelf Science., 76(2), 418–430.
Hadwen, W. L., & Arthington, A. H. (2007). Food webs of two intermittently open estuaries receiving N-enriched sewage effluent. Estuarine, Coastal and Shelf Science, 71, 347–358.
Herrera-Silveira, J. A. (1994). Nutrients from underground water discharges in a coastal lagoon (Celestún, Yucatán, Mexico). Verhaudlunger International VereinLimnologie, 25, 1398–1401.
Holmer, M., Wildush, D., & Hargrave, B. T. (2005). Organic enrichment from marine finfish aquaculture and effects on sediment biogeochemical processes. In B. T. Hargrave (Ed.), Environmental effects of marine finfish aquaculture. The Handbook of Environmental Chemistry, vol. 5. Water Pollution, Part M. Heidelberg: Springer 467 pp.
Hosseini, M., Agereh, S. R., Khaledian, Y., Zoghalchali, H. J., Brevik, E. C., & Naeini, S. A. R. M. (2017). Comparison of multiple statistical techniques to predict soil phosphorus. Applied Soil Ecology, 114, 123–131.
Huang, G. H., & Xia, J. (2001). Barriers to sustainable water-quality management. Journal of Environmental Management, 61, 1–23.
Hutcheson, M. S., Pedersen, D., Anastas, N. D., Fitzgerald, J., & Silveman, D. (1996). Beyond TPH: health based evaluation of petroleum hydrocarbon exposures. Regulatory Toxicology and Pharmacology, 24(1), 85–101.
Jackson, J. E. (1991). A user’s guide to principal components. New York: Wiley.
Johnson, D. E., Bartlett, J., & Nash, L. A. (2007). Coastal lagoonhabitat re-creationpotential in Hampshire, England. Marine Policy, 31, 599–606.
Kagalou, I., Tsimarakis, G., & Paschos, I. (2001). Water chemistry and biology in a shallow lake (Lake Pamvotis, Greece). Global NEST Journal, 3(2), 85–94.
Kannel, P. R., Lee, S., Lee, Y. S., Kanel, S. R., & Khan, S. P. (2007). Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental Monitoring and Assessment, 132, 93–110.
Karimi, Z. (2010). Study of flora and vegetation of international Gomishan Lagoon. Journal of Biology, 23(3), 436–446.
Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 610, 997–1009.
Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E. C., & Aitkenhead-Peterson, J. (2017a). Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degradation and Development., 28, 128–141. https://doi.org/10.1002/ldr.2541.
Khaledian, Y., Pereira, P., Brevik, E. C., Pundyte, N., & Paliulis, D. (2017b). The influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in Lithuanian Podzols. Land Degradation & Development, 28(1), 345–354. https://doi.org/10.1002/ldr.2638.
Khaledian, Y., Ebrahimi, S., Natesan, U., Basatnia, N., Nejad, B. B., Bagmohammadi, H., & Zeraatpisheh, M. (2018). Assessment of water quality using multivariate statistical analysis in the Gharaso River, Northern Iran. In Urban ecology, water quality and climate change (pp. 227–253). Cham: Springer.
Kotti, M. E., Vlessidis, A. G., Thanasoulias, N. C., & Evmiridis, N. P. (2005). Assessment of river water quality in Northwestern Greece. Water Resources Management, 19, 77–94.
Lessels, J. S., & Bishop, T. F. A. (2013). Estimating water quality using linear mixed models with stream discharge and turbidity. Journal of Hydrology, 498, 13–22.
Levin, L. A., Boesch, D. F., Covich, A., Dahm, C., Erséus, C., Ewel, K. C., Kneib, R. T., Moldenke, A., Palmer, M. A., Snelgrove, P., Strayer, D., & Weslawski, J. M. (2001). The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems, 4, 430–451.
Li, S., & Zhange, Q. (2010). Spatial characterization of dissolved trace elements and heavy metals in the upper river (China) using multivariate statistical techniques. Journal of Hazardous Materials., 176, 579–588.
Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.
López-Vicente, M., Quijano, L., Palazón, L., Gaspar, L., & Navas, A. (2015). Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (central Spanish pre-Pyrenees). Cuadernos de Investigación Geográfica, 41, 127–147.
Magni, P., De Falco, G., Como, S., Casu, D., Floris, A., Petrov, A. N., Castelli, A., & Perilli, A. (2008). Distribution and ecological relevance of fine sediments in organicenriched lagoons: the case study of the Cabras lagoon (Sardinia, Italy). Marine Pollution Bulletin, 56, 549–564.
Marques, J. M., Graça, H., Eggenkamp, H. G. M., Neves, O., Carreira, P. M., Matias, M. J., Mayer, B., Nunes, D., & Trancoso, V. N. (2013). Isotopic and hydrochemical data as indicators of recharge areas, flow paths and water–rock interaction in the Caldas da Rainha–Quinta das Janelasthermomineral carbonate rock aquifer (Central Portugal). Journal of Hydrology, 476, 302–313.
Masselink, R., Temme, A. J. A. M., Giménez, R., Casalí, J., & Keesstra, S. D. (2017). Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Cuadernos de Investigación Geográfica, 43(1), 17–39.
McElroy, R., Meeres, V., & Pickett, L. (2002). Development of a water and sediment sampling & monitoring program for the Esquimalt lagoon. British Columbia: Royal Roads University.
Medina-Gomez, & Herrera-Silveira, J. A. (2003). Spatial characterization of water quality in a karstic coastal lagoon without anthropogenic disturbance: a multivariate approach. Estuarine, Coastal and Shelf Science, 58(3), 455–465.
Myers, R. H. (1986). Classical and modern regression with applications. Boston: Duxbury Press.
Nelson, D. W., & Sommer, L. E., 1982. Total carbon, organic carbon, and organic matter. pp. 539–579. In A.L. Page (ed.) Methods of Soil Analysis (vol 9(2), 2nd ed). ASA Monogr. Amer. Soc. Agron. Madison.
Nizzoli, D., Welsh, D. T., Bartoli, M., & Viaroli, P. (2005). Impacts of mussel (Mytilus galloprovincialis) farming on oxygen consumption and nutrient recycling in a eutrophic coastal lagoon. Hydrobiologia, 550, 183–198.
Nocita, M., Stevens, A., Toth, G., Panagos, P., Wesemael, B. V., & Montanarella, L. (2014). Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biology & Biochemistry, 68, 337–347.
Panigrahy, P. K., Das, J., Das, S. N., & Sahoo, R. K. (1999). Evaluation of the influence of various physicochemical parameters on coastal water quality, around Orissa, by factor analysis. Indian Journal of Marine Sciences, 28, 360–364.
Papatheodorou, G., Demopoulou, G., & Lambrakis, N. (2005). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193, 759–776.
Pérez-Ruzafa, A., Marcos, C., Pérez-Ruzafa, I. M., Barcala, E., Hegazi, M. I., & Quispe, J. (2007). Detecting changes resulting from human pressure in a naturally quick changing and heterogeneous environment: spatial and temporal scales of variability in coastal lagoons. Estuarine, Coastal and Shelf Science, 75, 175–188.
Prasanna, M. B., & Ranjan, B. C. (2010). Physico chemical properties of water collected from Dhamra. International Journal of Environmental Sciences, 1(3), 334–342.
Radwan, G., Ellah, A., & Hussein, M. M. (2009). Physical limnology of Bardawil Lagoon, Egypt. American-Eurasian Journal of Agricultural & Environmental Science, 5(3), 331–336.
Reddy, R. K., & DeLaune, D. R. (2008). Biogeochemistry of wetlands: science and applications. Florida: CRC Press.
Renssen, H., Lougheed, B. C., Aerts, J. C. J. H., Moel, H., Ward, P. J., & Kwadijk, J. C. J. (2007). Simulating long-term Caspian Sea level changes: the impact of Holocene and future climate conditions. Earth and Planetary Science Letters, 261, 685–693.
Riazi, B. (2002). The investigation of benthic invertebrates in Gomishan Wetland. Iranian Journal of Natural Resources, 55(2), 211–223.
Romero, J., Kagalou, I., Imberger, J., Hela, D., Kotti, M., Bartzokas, A., Albanis, T., Evmirides, N., Karkabounas, S., Papagiannis, J., & Bithava, A. (2002). Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration. Hydrobiologia, 474, 91–105.
Ruggieri, N., Castellano, M., Capello, M., Maggi, S., & Povero, P. (2011). Seasonal and spatial variability of water quality parameters in the Port of Genoa, Italy, from 2000 to 2007. Marine Pollution Bulletin, 62(2), 340–349.
Sanchez, P. A., Ahamed, S., Carré, F., Hartemink, A. E., Hempel, J., Huising, J., Lagacherie, P., McBratney, A. B., McKenzie, N. J., Mendonça-Santos, M. L., Minasny, B., Montanarella, L., Okoth, P., Palm, C. A., Sachs, J. D., Shepherd, K. D., Vågen, T. G., Vanlauwe, B., Walsh, M. G., Winowieki, L. A., & Zhang, G. L. (2009). Digital soil map of the world. Science, 325(5941), 680–681. https://doi.org/10.1126/science.1175084.
Sharaf, M. A., Illman, D. L., & Kowalski, B. R. (1986). Chemometrics. New York: Wiley.
Shirodkar, P. V., Pradhan, U. K., & Vethamony, P. (2010). Impact of water quality changes on harbour environment due to port activities along the west coast of India. Second International Conference on Coastal Zone Engineering and Management (Arabian coast 2010), Muscat, Oman.
Silva, M. A. M., Souza, M. F. L., & Abreu, P. C. O. V. (2015). Spatial and temporal variation of dissolved inorganic nutrients, and chlorophyll-α in a tropical estuary in northeastern Brazil: dynamics of nutrient removal. Brazilian Journal of Oceanography (Online), 63, 1–15.
Simeonov, V., Stratis, J., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment ofthe surface water quality in Northern Greece. Water Research, 37, 4119–4124.
Simoes, F. S., Moreira, A. B., Bisinoti, M. C., Gimenez, S. M. N., & Yabe, M. J. S. (2008). Water quality indexas a simple indicator of aquaculture effects on aquatic bodies. Ecological Indicators, 8(5), 476–484.
Singh, K., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-a case study. Water Research, 38, 3980–3992.
Solorzano, L., & Sharp, J. H. (1980). Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography, 25(4), 754–758.
Suzuki, M. S., Ovalle, A. R. C., & Pereira, E. A. (1998). Effects of sand bar openings on some limnological variables in a hypertrophic tropical coastal lagoon of Brazil. Hydrobiologia, 368, 111–122.
Tran, P. H., Tran, T. T., Lee, K. H., Kim, D. J., & Lee, B. J. (2010). Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opinion on Drug Delivery, 7, 647–661.
Upadhyay, S. (1988). Physicochemical characteristics of Mahanadi estuarine ecosystem, east coast of India. Indian Journal of Marine Sciences, 17, 1923.
Vasques, G. M., Grunwald, S., & Sickman, J. O. (2009). Modeling of soil organic carbon fractions using visible-near-infrared spectroscopy. Soil Science Society of America Journal, 73, 176–184.
Viscarra Rossel, R. A., McGlynn, R. N., & McBratney, A. B. (2006). Determining the composition of mineral-organic mixes using UV-VIS-NIR diffuse reflectance spectroscopy. Geoderma, 137, 70–82.
Wang, Y. S., Lou, Z. P., Sun, C. C., Wu, M. L., & Han, S. H. (2006). Multivariate statistical analysis of water quality and phytoplankton characteristics in Daya Bay, China, from 1999 to 2002. Oceanologia, 48, 193–213.
Weber, M. E., Kuhn, G., Sprenk, D., Rolf, C., Ohlwein, C., & Ricken, W. (2012). Dust transport from Patagonia to Antarctica—a new stratigraphic approach from the Scotia Sea and its implications for the last glacial cycle. Quaternary Science Reviews, 36, 177–188. https://doi.org/10.1016/j.quascirev.2012.01.016.
Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.
Wu, M. L., Wang, Y. S., Sun, C. C., Wang, H., Dong, J. D., Yin, J. P., & Han, S. H. (2010). Identification of coastal water quality by statistical analysis methods in Daya Bay, South China Sea. Marine Pollution Bulletin, 60, 852–860.
Xingjian, L., & Chendong, G. (2012). Spatial and temporal variations of sediment organic matter in Xiaohai Lagoon, Hainan Island. Acta Oceanologica Sinica, 31(3), 74–86.
Zhang, M., & Harrington, P. B. (2015). Simultaneous quantification of Aroclor mixtures in soil samples by gas chromatography/mass spectrometry with solid phase microextraction using partial least-squares regression. Chemosphere, 118, 187–193.
Zimmerman, J. T. F. (1981). The flushing of well-mixed tidal lagoons and its seasonal fluctuation. In Coastal lagoon research: present and future (pp. 15–26). Paris: UNESCO.
Acknowledgements
The authors acknowledge “Gorgan University of Agricultural Sciences and Natural Resources” and “Inland Waters Aquatic Stocks Research Center-Gorgan” for providing the Framework of the studies and the access to data.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Basatnia, N., Hossein, S.A., Rodrigo-Comino, J. et al. Assessment of temporal and spatial water quality in international Gomishan Lagoon, Iran, using multivariate analysis. Environ Monit Assess 190, 314 (2018). https://doi.org/10.1007/s10661-018-6679-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-018-6679-2
Keywords
Profiles
- Jesús Rodrigo-Comino View author profile