Skip to main content

Advertisement

Log in

Speciation and quantification of Hg in sediments contaminated by artisanal gold mining in the Gualaxo do Norte River, Minas Gerais, SE, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Iron Quadrangle in SE Brazil was, in the eighteenth century, one of the most important Au producing regions of Brazil. In this region, gold is produced, even today, by artisanal methods that use Hg to increase the extraction efficiency with no control of Hg release to water systems and the atmosphere. In this context, the Gualaxo do Norte River is of particular interest; its springs are located in the Doce River basin, an important Brazilian basin that supplies water for 3.5 million people. The main goal of this work was to quantify and speciate the Hg in the sediments of the Gualaxo do Norte River using a direct mercury analyzer and gas chromatography-pyrolysis-atomic fluorescence detection system. Statistical analyses consisted of principal component analysis, aiming to assess interactions among elements and species and to group the variables in factors affecting the properties of sediment. The results show that total Hg (THg) and methylmercury (CH3Hg+) concentrations in samples ranged from 209 to 1207 μg kg−1 and from 0.07 to 1.00 μg kg−1, respectively (methylation percentages from 0.01 to 0.27%). Thermal desorption analysis showed that mercury is mainly present in the oxidized form, and correlation analyses pointed to a relationship between THg and MnO, indicating that manganese can oxidize and/or adsorb Hg. Together, MO and CH3Hg+ are important parameters in the third principal component, indicating the influence of OM on the methylation process. This first investigation on Hg methylation in this small-scale gold mining area points to the possibility of Hg bioaccumulation and to the need of better understanding the biogeochemical cycle of Hg in this area. Samples were collected in 2012, prior to the 2015 Fundão Dam disaster. The results are also a record of the characteristics of the sediment prior to that event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acha, D., Hintelmann, H., & Yee, J. (2011). Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Chemosphere, 82(6), 911–916. https://doi.org/10.1016/j.chemosphere.2010.10.050.

    Article  CAS  Google Scholar 

  • Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2-3), 355–384. https://doi.org/10.1016/S0168-6445(03)00046-9.

    Article  CAS  Google Scholar 

  • Beldowski, J., Miotk, M., Beldowska, M., & Pempkowiak, J. (2014). Total, methyl and organic mercury in sediments of the Southern Baltic Sea. Marine Pollution Bulletin, 87(1-2), 388–395. https://doi.org/10.1016/j.marpolbul.2014.07.001.

    Article  CAS  Google Scholar 

  • Buscher, D. P. (1992). Mercury in river systems from garimpeiro activities in the vicinity of OuroPreto, Minas Gerais, Brazil, Colorado School of Mines. Ph.D. Thesis, pp. 136.

  • Carrasco, L., & Vassileva, E. (2015). Determination of methylmercury in marine sediment samples: method validation and occurrence data. AnalyticaChimica Acta, 853, 167–178. https://doi.org/10.1016/j.aca.2014.10.026.

    Article  CAS  Google Scholar 

  • CBHRD. (2016). Rio Doce River Basin Committee. http://www.cbhdoce.org.br/institucional/a-bacia. accessed 20 Nov 2016.

  • Costa, A. T. (2001). Geoquímica das águas e dos sedimentos da bacia do Rio Gualaxo do Norte, Leste-Sudeste do QF, MG: Estudo de uma área afetada por atividades de extração mineral, Departamento de Geologia da Universidade Federal de Ouro Preto, Minas Gerais. M.Sc. Thesis, pp. 147

  • Cursino, L., Oberdá, S. M., Cecílio, R. V., Moreira, R. M., Chartone-Souza, E., & Nascimento, A. M. A. (1999). Mercury concentration in the sediment at different gold prospecting sites along the Carmo stream, Minas Gerais, Brazil, and frequency of resistant bacteria in the respective aquatic communities. Hydrobiologia, 394, 5–12. https://doi.org/10.1023/A:1003541512505.

    Article  CAS  Google Scholar 

  • Durão Júnior, W. A., Palmieri, H. E. L., Trindade, M. C., de Aquino Branco, O. E., Filho, C. A. C., Fleming, P. M., da Silva, J. B. B., & Windmöller, C. C. (2009). Speciation, distribution, and transport of mercury in contaminated soils from Descoberto, Minas Gerais, Brazil. Journal of Environmental Monitoring, 11(5), 1056–1063. https://doi.org/10.1039/b813997k.

    Article  Google Scholar 

  • FEAM (Fundação Estadual do Meio Ambiente). (2005). Diagnosis of the environmental contamination in Descoberto, Minas Gerais, due to the outcrop of mercury in December 2002 (pp. 166). Publication FEAM-RT-DIMOG-001/2005, Publication CDTN-945/2005, Belo Horizonte.

  • Feng, X., Bai, W., Shang, I., He, T., Qiu, G., & Yan, H. (2011). Mercury speciation and distribution in Aha Reservoir which was contaminated by coal mining activities in Guiyang, Guizhou, China. Applied Geochemistry, 26(2), 213–221. https://doi.org/10.1016/j.apgeochem.2010.11.021.

    Article  CAS  Google Scholar 

  • Ferro, A. M., Mota, A. M., & Canário, J. (2014). Pathways and speciation of mercury in the environmental compartments of Deception Island, Antarctica. Chemosphere, 95, 227–233. https://doi.org/10.1016/j.chemosphere.2013.08.081.

    Article  Google Scholar 

  • Fitzgerald, W. F. & Lamborg C. H. (2005). Geochemistry of Mercury in the Environment. In: Sherwood-Lollar, B. (Ed.), Holland, H. D. & Turekian. K. K. (Executive Eds.)., Treatise on Geochemistry (vol. 9, p. 107–148). Oxford: Elsevier.

  • Horvat, M., Bloom, N. S., & Liang, L. (1993). Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples. Analytica Chimica Acta, 281, 135–152.

    Article  CAS  Google Scholar 

  • Lacerda, L. D. (1997a). Contaminação por mercúrio no Brasil: Fontes Industriais vs garimpo de ouro. Química Nova, 20(2), 196–199. https://doi.org/10.1590/S0100-40421997000200012.

    Article  CAS  Google Scholar 

  • Lacerda, L. D. (1997b). Evolution of mercury contamination in Brazil. Water, Air and Soil Pollution, 97(3-4), 247–255. https://doi.org/10.1007/BF02407463.

    Article  CAS  Google Scholar 

  • Lacerda, L. D., & Solomons, W. (1998). Mercury from gold and silver mining: a chemical time bomb? Berlin: Springer. https://doi.org/10.1007/978-3-642-58793-1.

  • Lacerda, L. D., Malm, O., Guimarães, J. R. D., Salomons, W., & Wilken, R. (1995). Mercury and the new gold rush in the south. In Salomons & Stigliani (Eds.), Biogeodynamics of pollutants in soils and sediments (pp. 213–239). New York: Springer. https://doi.org/10.1007/978-3-642-79418-6_10.

    Chapter  Google Scholar 

  • Lechler, P. J., Miller, J. R., Lacerda, L. D., Vinson, D., Bonzongo, J. C., Lyon, W. B., & Warwick, J. J. (2000). Elevated mercury concentrations in soils, sediments, water, and fish of the Madeira River basin, Brazilian Amazon: a function of natural enrichments? The Science of the Total Environment, 260(1-3), 87–96. https://doi.org/10.1016/S0048-9697(00)00543-X.

    Article  CAS  Google Scholar 

  • Lehnherr, I. (2014). Methylmercury biogeochemistry: a review with special reference to Artic aquatic ecosystems. Environmental Reviews, 22(3), 229–243. https://doi.org/10.1139/er-2013-0059.

    Article  CAS  Google Scholar 

  • Malm, O., Castro, M. B., Bastos, W. R., Branches, F. J. P., Guimarães, J. R. D., Zuffo, C. E., & Pfeiffer, W. C. (1995). An assessment of Hg pollution in different gold mining areas, Amazon Brazil. The Science of the Total Environment, 175(2), 127–140. https://doi.org/10.1016/0048-9697(95)04909-6.

    Article  CAS  Google Scholar 

  • Manly, B. F. J. (2004). Multivariate Statistical Methods: A Primer, 3rd Edn. Boca Raton: Chapman and Hall/CRC.

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2015). Geochemistry of mercury in tropical swamps impacted by gold mining. Chemosphere, 134, 44–51. https://doi.org/10.1016/j.chemosphere.2015.03.012.

    Article  CAS  Google Scholar 

  • Mendes, L. A., Lena, J. C., Valle, C. M., Fleming, P. M., & Windmöller, C. C. (2016). Quantification of methylmercury and geochemistry of mercury in sediments from a contaminated area of Descoberto (MG), Brazil. Applied Geochemistry, 75, 32–43. https://doi.org/10.1016/j.apgeochem.2016.10.011.

    Article  CAS  Google Scholar 

  • Miller, C. L., Watson, D. B., Lester, B. P., Howe, J. Y., Phillips, D. H., He, F., Liang, L., & Pierce, E. M. (2015). Formation of soluble mercury oxide coatings: transformation of elemental mercury in soils. Environmental Science and Technology, 49(20), 12105–12111. https://doi.org/10.1021/acs.est.5b00263.

    Article  CAS  Google Scholar 

  • Pinedo-Hernandez, J., Marrugo-Negrete, J., & Diez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119, 1289–1295. https://doi.org/10.1016/j.chemosphere.2014.09.044.

    Article  CAS  Google Scholar 

  • Radojević, M., & Bashkin, V. N. (1999). Practical environmental analysis (pp. 274–377). London: Royal Society of Chemistry. RSC.

    Google Scholar 

  • Ramos, W. E. S. (2005). Contamination by mercury and arsenic in rivers of Iron Quadrangle - MG, in mining areas and of prospector activities. Universidade Federal de Viçosa. Viçosa. M.Sc. Thesis. pp. 108.

  • Reinmann, C., Filzmoser, P., Garret, R., & Duter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R (1st ed.). England: John Wiley and Sons.

    Book  Google Scholar 

  • Shelton, L. R. & Capel, P. D. (1995). Guidelines for collection and processing samples of stream bed sediment for analysis of trace elements and organic contaminants for the national water-quality assessment program (pp. 94–458). Sacramento: U. S. Geological Survey Open File Report.

  • Stock, A. (1926). Die Gefährlichkeit des Quecksilbers. Zeit. Anorg. Chem., 29, 461–466 The danger of mercury. http://iaomt.org/wp-content/uploads/articles_Stock-1926.pdf. (Accessed 05.02.15).

    Google Scholar 

  • Templ, M., Filzmoser, P., & Reinmann, C. (2008). Cluster analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 23(8), 2198–2213. https://doi.org/10.1016/j.apgeochem.2008.03.004.

    Article  CAS  Google Scholar 

  • Tomiyasu, T., Naganoa, A., Yonehara, N., Sakamoto, H., Oki, R. K., & Akagi, H. (2000). Mercury contamination in the Yatsushiro Sea, south-western Japan: spatial variations of mercury in sediment. The Science of the Total Environment, 257(2-3), 121–132. https://doi.org/10.1016/S0048-9697(00)00502-7.

    Article  CAS  Google Scholar 

  • United Nations Environment Programme. (2013). UNEP Year Book 2013: Emerging issues in our global environment (pp. 68). Nairobi: UNEP Division of Early Warning and Assessment.

  • Varejão, V. V., Bellato, C. R., & Fontes, M. P. F. (2009). Mercury fractionation in stream sediments from the Quadrilátero Ferrífero gold mining region, Minas Gerais State, Brazil. Environmental Monitoring and Assessment, 157(1), 125–135. https://doi.org/10.1007/s10661-008-0522-0.

    Article  Google Scholar 

  • Villas Bôas, R. C., Beinhoff, C., & Silva, A. R. (2001). Mercury in the Tapajós Basin (p. 198). Rio de Janeiro: CNPq/CYTED.

    Google Scholar 

  • Windmöller, C. C., Santos, R. C., Athayde, M., & Palmieri, H. E. L. (2007). Distribuição e especiação de mercúrio em sedimentos de áreas de garimpo de ouro do Quadrilátero Ferrífero (MG). Química Nova, 30(5), 1088–1094.

    Article  Google Scholar 

  • Windmöller, C. C., Durão Jr., W. A., Oliveira, A., & Valle, C. M. (2015). The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): implications for the mercury cycle. Ecotoxicology and Environmental Safety, 112, 201–211. https://doi.org/10.1016/j.ecoenv.2014.11.009.

    Article  Google Scholar 

  • Windmöller, C. C., Silva, N. C., Andrade, P. H. M., Mendes, L. A., & Valle, C. M. (2017). Use of a direct mercury analyzer® for mercury speciation in different matrices without sample preparation. Analytical Methods, 9(14), 2159–2167. https://doi.org/10.1039/C6AY03041F.

    Article  Google Scholar 

  • Zeferino, J. (1997). Akkumulation und Transport des durch Goldaktivität eneingebrachten Quecksilbers in Flüssen des Quadrilátero Ferrífero (166 pp). Minas Gerais: Brasilien, Universität Erlangen-Nürnberg, Nürnberg.

    Google Scholar 

Download references

Funding

The authors thank CNPq and CAPES for granting scholarships to Rhodes (M.Sc.) scholarship, Santolin (Ph.D.), Mendes (Ph.D.), and project 577309/2008-0; the authors also thank FAPEMIG (Project APQ-2728-5.02/07 and APQ-03861-09) and PRPq/UFMG (Pró-reitoria de Pesquisa) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Carvalho de Lena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Penha Rhodes, V., de Lena, J.C., Santolin, C.V.A. et al. Speciation and quantification of Hg in sediments contaminated by artisanal gold mining in the Gualaxo do Norte River, Minas Gerais, SE, Brazil. Environ Monit Assess 190, 49 (2018). https://doi.org/10.1007/s10661-017-6394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6394-4

Keywords

Navigation