Skip to main content

Advertisement

Log in

Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Riverbed scour of bridge piers can cause rapid loss in foundation strength, leading to sudden bridge collapse. This study used multi-beam echo sounders (Seabat 7125) to map riverbed surrounding the foundations of four major bridges in the lower, middle, and upper reaches of the 700-km Yangtze River Estuary (YRE) during June 2015 and September 2016. The high-resolution data were utilized to analyze the morphology of the bridge scour and the deformation of the wide-area riverbed (i.e., 5–18 km long and 1.3–8.3 km wide). In addition, previous bathymetric measurements collected in 1998, 2009, and 2013 were used to determine riverbed erosion and deposition at the bridge reaches. Our study shows that the scour depth surrounding the bridge foundations progressed up to 4.4–19.0 m in the YRE. Over the past 5–15 years, the total channel erosion in some river reaches was up to 15–17 m, possessing a threat to the bridge safety in the YRE. Tide cycles seemed to have resulted in significant variation in the scour morphology in the lower and middle YRE. In the lower YRE, the riverbed morphology displayed one long erosional ditch on both sides of the bridge foundations and a long-strip siltation area distributed upstream and downstream of the bridge foundations; in the middle YRE, the riverbed morphology only showed erosional morphology surrounding the bridge foundations. Large dunes caused deep cuts and steeper contours in the bridge scour. Furthermore, this study demonstrates that the high-resolution grid model formed by point cloud data of multi-beam echo sounders can clearly display the morphology of the bridge scour in terms of wide areas and that the sonar technique is a very useful tool in the assessment of bridge scours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashley, G. M. (1990). Classification of large-scale subaqueous bedforms: a new look at an old problem. Journal of Sedimentary Research, 60, 160–172.

    Article  Google Scholar 

  • Ataie-Ashtiani, B., & Beheshti, A. (2006). Experimental investigation of clear-water local scour at pile groups. Journal of Hydraulic Engineering, 132(10), 1100–1104. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1100).

    Article  Google Scholar 

  • Cardoso, A., & Bettess, R. (1999). Effects of time and channel geometry on scour at bridge abutments. Journal of Hydraulic Engineering, 125(4), 388–399. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(388).

    Article  Google Scholar 

  • Chang, W. Y., Constantinescu, G., Tsai, W. F., & Lien, H. C. (2011). Coherent structure dynamics and sediment erosion mechanisms around an in-stream rectangular cylinder at low and moderate angles of attack. Water Resources Research, 47, W12532.

    Article  Google Scholar 

  • Chen, J., Wang, Z., Li, M., Wei, T., & Chen, Z. (2012). Bedform characteristics during falling flood stage and morphodynamic interpretation of the middle–lower Changjiang (Yangtze) River channel, China. Geomorphology, 147, 18–26.

    Article  Google Scholar 

  • Chen, J. Y., Yun, C. X., Xu, H. G., & Dong, Y. F. (1979). The development model of the Chang Jiang River estuary during last 2000 years. Acta Oceanologica Sinica, 1, 103–111.

    Google Scholar 

  • Cui, L., GAO, C., Zhao, X., Ma, Q., Zhang, M., Li, W., Song, H., Wang, Y., Li, S., & Zhang, Y. (2013). Dynamics of the lakes in the middle and lower reaches of the Yangtze River basin, China, since late nineteenth century. Environmental Monitoring and Assessment, 185(5), 4005–4018. https://doi.org/10.1007/s10661-012-2845-0.

    Article  CAS  Google Scholar 

  • Dai, Z., Fagherazzi, S., Mei, X., & Gao, J. (2016). Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013. Geomorphology, 268, 123–132. https://doi.org/10.1016/j.geomorph.2016.06.009.

    Article  Google Scholar 

  • Dai, Z., & Liu, J. T. (2013). Impacts of large dams on downstream fluvial sedimentation: An example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). Journal of Hydrology, 480, 10–18. https://doi.org/10.1016/j.jhydrol.2012.12.003.

    Article  Google Scholar 

  • Deng, B., Wu, H., Yang, S., & Zhang, J. (2017). Longshore suspended sediment transport and its implications for submarine erosion off the Yangtze River estuary. Estuarine, Coastal and Shelf Science, 190, 1–10. https://doi.org/10.1016/j.ecss.2017.03.015.

    Article  Google Scholar 

  • Deng, L., & Cai, C. (2009). Bridge scour: Prediction, modeling, monitoring, and countermeasures—Review. Practice Periodical on Structural Design and Construction, 15, 125–134.

    Article  Google Scholar 

  • Edge, B. L., Scheffner, N. W., Fisher, J. S., & Vignet, S. N. (1998). Determination of velocity in estuary for bridge scour computations. Journal of Hydraulic Engineering, 124(6), 619–628. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:6(619).

    Article  Google Scholar 

  • Gao, C., Chen, S., & Yu, J. (2013). River islands’ change and impacting factors in the lower reaches of the Yangtze River based on remote sensing. Quaternary International, 304, 13–21. https://doi.org/10.1016/j.quaint.2013.03.001.

    Article  Google Scholar 

  • Gu, C., Hu, L., Zhang, X., Wang, X., & Guo, J. (2011). Climate change and urbanization in the Yangtze River Delta. Habitat International, 35(4), 544–552. https://doi.org/10.1016/j.habitatint.2011.03.002.

    Article  Google Scholar 

  • Guo, H., Hu, Q., Zhang, Q., & Feng, S. (2012). Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China: 2003–2008. Journal of Hydrology, 416-417, 19–27. https://doi.org/10.1016/j.jhydrol.2011.11.027.

    Article  Google Scholar 

  • Hosseini, R., & Amini, A. (2015). Scour depth estimation methods around pile groups. KSCE Journal of Civil Engineering, 19(7), 2144–2156. https://doi.org/10.1007/s12205-015-0594-7.

    Article  Google Scholar 

  • Johnson, P. A., Clopper, P. E., Zevenbergen, L. W., & Lagasse, P. F. (2015). Quantifying uncertainty and reliability in bridge scour estimations. Journal of Hydraulic Engineering, 141(7), 04015013. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001017.

    Article  Google Scholar 

  • Keshavarzi, A., & Noori, L. K. (2010). Environmental protection stability of river bed and banks using convex, concave, and linear bed sills. Environmental Monitoring and Assessment, 171(1-4), 621–631. https://doi.org/10.1007/s10661-010-1306-x.

    Article  Google Scholar 

  • Khosronejad, A., Kang, S., & Sotiropoulos, F. (2012). Experimental and computational investigation of local scour around bridge piers. Advances in Water Resources, 37, 73–85. https://doi.org/10.1016/j.advwatres.2011.09.013.

    Article  Google Scholar 

  • Lu, X., Cheng, H., Zhou, Q. P., Jiang, Y., Guo, X., Zheng, S., & Wu, S. (2016). Features and mechanism of asymmetric double-kedneys scoured geomorphology of pier in tidal estuary. Haiyang Xuebao, 38, 118–125.

    Google Scholar 

  • Luo, X. X., Yang, S. L., Wang, R. S., Zhang, C. Y., & Li, P. (2017). New evidence of Yangtze delta recession after closing of the Three Gorges Dam. Scientific Reports, 7.

  • McGovern, D. J., Ilic, S., Folkard, A. M., McLelland, S. J., & Murphy, B. J. (2014). Time development of scour around a cylinder in simulated tidal currents. Journal of Hydraulic Engineering, 140(6), 04014014. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000857.

    Article  Google Scholar 

  • Melville, B. (1992). Local scour at bridge abutments. Journal of Hydraulic Engineering, 118(4), 615–631. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(615).

    Article  Google Scholar 

  • Melville, B. W., & Raudkivi, A. J. (1977). Flow characteristics in local scour at bridge piers. Journal of Hydraulic Research, 15(4), 373–380. https://doi.org/10.1080/00221687709499641.

    Article  Google Scholar 

  • Noormets, R., Ernstsen, V. B., Bartholomä, A., Flemming, B. W., & Hebbeln, D. (2006). Implications of bedform dimensions for the prediction of local scour in tidal inlets: a case study from the southern North Sea. Geo-Marine Letters, 26(3), 165–176. https://doi.org/10.1007/s00367-006-0029-z.

    Article  CAS  Google Scholar 

  • Sheppard, D. M., Odeh, M., & Glasser, T. (2004). Large scale clear-water local pier scour experiments. Journal of Hydraulic Engineering, 130(10), 957–963. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:10(957).

    Article  Google Scholar 

  • Unger, J., & Hager, W. H. (2006). Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Experiments in Fluids, 42(1), 1–19. https://doi.org/10.1007/s00348-006-0209-7.

    Article  Google Scholar 

  • Vasquez, J. and Walsh, B. (2009). CFD simulation of local scour in complex piers under tidal flow. 33rd IAHR Conference Water Engineering for a Sustainable Environment, Vancouver, 914–920.

  • Wang, H., Li, A., Guo, T., & Tao, T. (2014). Establishment and application of the wind and structural health monitoring system for the Runyang Yangtze River Bridge. Shock and Vibration, V2014, 1–15.

    Google Scholar 

  • Wang, J., Bai, S. B., Liu, P., Li, Y. Y., Gao, Z. R., Qu, G. X., & Cao, G. J. (2009). Channel sedimentation and erosion of the Jiangsu reach of the Yangtze River during the last 44 years. Earth Surface Processes and Landforms, 34, 1587–1593.

    Article  CAS  Google Scholar 

  • Wheaton, J. M., Brasington, J., Darby, S. E., & Sear, D. A. (2009). Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms, 32, 136–156.

    Google Scholar 

  • Xu, H. X., Fan, L. F., & Gu, M. J. (2012). On tidal mark and tidal current mark in the Yangtze River. Port & Waterway Engineering, 6, 15–20.

    Google Scholar 

  • Yang, S. L., Xu, K. H., Milliman, J. D., Yang, H. F., & Wu, C. S. (2015). Decline of Yangtze River water and sediment discharge: impact from natural and anthropogenic changes. Scientific Reports, 5(1), 12581. https://doi.org/10.1038/srep12581.

    Article  CAS  Google Scholar 

  • Zanke, U. C. E., Hsu, T.-W., Roland, A., Link, O., & Diab, R. (2011). Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coastal Engineering, 58(10), 986–991. https://doi.org/10.1016/j.coastaleng.2011.05.011.

    Article  Google Scholar 

  • Zhang, L., Wu, B., Yin, K., Li, X., Kia, K., & Zhu, L. (2014). Impacts of human activities on the evolution of estuarine wetland in the Yangtze Delta from 2000 to 2010. Environmental Earth Sciences, 73, 435–447.

    Article  Google Scholar 

  • Zheng, S., Cheng, H., Zhou, Q., Wu, S., Shi, S., & Wei, X. (2016a). Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China. Continental Shelf Research, 139, 54–61.

    Google Scholar 

  • Zheng, S., Cheng, H., Wu, S., Liu, G., Lu, X., & Xu, W. (2016b). Discovery and implications of catenary-bead subaqueous dunes. Science China Earth Sciences, 59(3), 495–502. https://doi.org/10.1007/s11430-015-5194-3.

    Article  Google Scholar 

Download references

Acknowledgements

During the preparation of this manuscript, Shuwei Zheng was supported by an award of the China Scholarship Council (File No. 201606140126). We would also like to thank an anonymous reviewer for reviewing the manuscript and offering many helpful suggestions, which have helped improve the quality of this paper.

Funding

This study was financially supported through a grant from the Natural Science Foundation of China (Grant No. 41476075) and a grant from the Impact of Major Projects on the geological environment of the Yangtze River (Grant No. DD20160246). The study also benefited from a US Department of Agriculture Hatch Fund project (Project No. LAB94230). The statements, findings, and conclusions are those of the authors and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Jun Xu or Heqin Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Xu, Y.J., Cheng, H. et al. Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques. Environ Monit Assess 190, 15 (2018). https://doi.org/10.1007/s10661-017-6393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6393-5

Keywords

Navigation