Skip to main content

Advertisement

Log in

Probabilistic assessment of phenophase-wise agricultural drought risk under different sowing windows: a case study with rainfed soybean

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A new methodology for crop-growth stage-specific assessment of agricultural drought risk under a variable sowing window is proposed for the soybean crop. It encompasses three drought indices, which include Crop-Specific Drought Index (CSDI), Vegetation Condition Index (VCI), and Standardized Precipitation Evapotranspiration Index (SPEI). The unique features of crop-growth stage-specific nature and spatial and multi-scalar coverage provide a comprehensive assessment of agricultural drought risk. This study was conducted in 10 major soybean-growing districts of Madhya Pradesh state of India. These areas contribute about 60% of the total soybean production for the country. The phenophase most vulnerable to agricultural drought was identified (germination and flowering in our case) for each district across four sowing windows. The agricultural drought risk was quantified at various severity levels (moderate, severe, and very severe) for each growth stage and sowing window. Validation of the proposed new methodology also yielded results with a high correlation coefficient between percent probability of agricultural drought risk and yield risk (r = 0.92). Assessment by proximity matrix yielded a similar statistic. Expectations for the proposed methodology are better mitigation-oriented management and improved crop contingency plans for planners and decision makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abramowitz, M., & Stegun, I. (1965). Handbook of mathematical functions. New York: Dover Publications.

    Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO Corporate Document Repository.

  • AMS. (1997). Meteorological drought—policy statement. BAMS, 78(5), 847–849.

    Google Scholar 

  • Anyamba, A., Tucker, C. J., & Eastman, J. R. (2001). NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. International Journal of Remote Sensing, 22, 1847–1859.

    Article  Google Scholar 

  • Bastidas, A. M., Setiyono, T. D., Dobermann, A., Cassman, K. G., Elmore, R. W., Graef, G. L., & Specht, J. E. (2008). Soybean sowing date: the vegetative, reproductive, and agronomic impacts. Crop Science, 48(2), 727–740. https://doi.org/10.2135/cropsci2006.05.0292.

    Article  Google Scholar 

  • Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., De Stefano, L., & Vogt, J. (2016). Estimating drought risk across Europe from reported drought impacts, hazard indicators and vulnerability factors. Hydrology and Earth System Sciences, 20(7), 2779–2800. https://doi.org/10.5194/hess-20-2779-2016.

    Article  Google Scholar 

  • Boyer, J. S. (1970). Leaf enlargement and metabolic rates in corn, soybeans and sunflowers at various water potentials. Plant Physiology, 46(2), 233–235. https://doi.org/10.1104/pp.46.2.233.

    Article  CAS  Google Scholar 

  • Briffa, K. R., Jones, P. D., & Hulme, M. (1994). Summer moisture variability across, 1892–1991: an analysis based on the Palmer drought severity index. International Journal of Climate, 14(5), 475–506. https://doi.org/10.1002/joc.3370140502.

    Article  Google Scholar 

  • Cancelliere, A., Mauro, G. D., Bonaccorso, B., & Rossi, G. (2007). Drought forecasting using the standardized precipitation index. Water Resource Manage, 21(5), 801–819. https://doi.org/10.1007/s11269-006-9062-y.

    Article  Google Scholar 

  • Chopra, P. (2006). Drought risk assessment using remote sensing and GIS: a case study of Gujarat. Msc Thesis. International Institute for Geo-Information Science and Earth Observation, Enschede, the Netherlands.

  • Clawson, E. L., & Boquet, D. J. (2007). Planting dates for soybean varieties in Northeast Louisiana. Louisiana agriculture.

  • De Souza, P. I., Egli, D. B., & Bruening, W. P. (1997). Water stress during seed filling and leaf senescence in soybean. Agronomy Journal, 89(5), 807–812. https://doi.org/10.2134/agronj1997.00021962008900050015x.

    Article  Google Scholar 

  • DES (Directorate of Economics and Statistics). (2011). http://eands.dacnet.nic.in/StateData_11-12Year.htm.

  • DES (Directorate of Economics and Statistics). (2012). http://eands.dacnet.nic.in/StateData_12-13Year.htm.

  • DES (Directorate of Economics and Statistics). (2013). http://eands.dacnet.nic.in/StateData_13-14Year.htm.

  • Dhakar, R., Sehgal, V. K., & Pradhan, S. (2013). Study on inter-seasonal and intra-seasonal relationships of meteorological and agricultural drought indices in the Rajasthan State of India. Journal of Arid Environments, 97, 108–119. https://doi.org/10.1016/j.jaridenv.2013.06.001.

    Article  Google Scholar 

  • Dietz, T. J., Put, M., & Subbiah, S. (1998). Drought risk assessment for dryland agricultural in semi-arid Telangana, Andhra Pradesh, India. In The arid frontier: interactive management of environment and development (Ed.), Bruins, H.J (pp. 143–161). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Eck, H. V., Mathers, A. C., & Musick, J. T. (1987). Plant water stress at various growth stages and growth and yield of soybeans. Field Crops Research, 17(1), 1–16. https://doi.org/10.1016/0378-4290(87)90077-3.

    Article  Google Scholar 

  • Hajare, T. N., Mandal, D. K., Prasad, J., & Patil, V. P. (2001). Effect of moisture stress on biomass yield of soybean (Glycine max) in Nagpur district, Maharashtra. Agropedology, 11, 17–22.

    Google Scholar 

  • Hanway, J. J. (1971). How a corn plant develops. Iowa state university cooperative. Ext. Service. Special report no. 48.

  • Hao, Z., & AghaKouchak, A. (2013). Multivariate standardized drought index: a parametric multi-index model. Advances in Water Resources, 57, 12–18. https://doi.org/10.1016/j.advwatres.2013.03.009.

    Article  Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering, 108(3), 225–230.

    Google Scholar 

  • Hayes, M. J. (2006). Drought indices. Retrieved September 6, 2008, from NDMC (National Drought Mitigation Center) Web site: http://drought.unl.edu/whatis/indices.htm.

  • Heim, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149–1165.

    Article  Google Scholar 

  • Hesketh, J. D., Myhre, D. L., & Willey, C. R. (1973). Temperature control of time intervals between vegetative and reproductive events in soybean. Crop Science, 13(2), 250–254. https://doi.org/10.2135/cropsci1973.0011183X001300020030x.

    Article  Google Scholar 

  • Hisdal, H., & Tallaksen, L. M. (2000). Drought event definition. Assessment of the regional impact of droughts in Europe, Technical Report No. 6. Oslo, Norway: University of Oslo, Department of Geophysics.

  • Hunt, D. E., Svoboda, M., Wardlow, B., Hubbard, K. G., Hayes, M., & Arkebauer, T. (2014). Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agricultural and Forest Meteorology, 191, 1–11. https://doi.org/10.1016/j.agrformet.2014.02.001.

    Article  Google Scholar 

  • Jayanthi, H., Husak, G. J., Funk, C., Magadzire, T., Adoum, A., & Verdin, J. P. (2014). A probabilistic approach to assess agricultural drought risk to maize in southern Africa and millet in Western Sahel using satellite estimated rainfall. International Journal of Disaster Risk Reduction., 10, 490–502. https://doi.org/10.1016/j.ijdrr.2014.04.002.

    Article  Google Scholar 

  • Ji, L., & Peters, A. J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87(1), 85–98. https://doi.org/10.1016/S0034-4257(03)00174-3.

    Article  Google Scholar 

  • Jones, J. W., Boote, K. J., Jagtap, S. S., & Mishoe, J. W. (1991). Soybean development. In Plant and soil systems-agronomy monograph (pp.71–90). no.31.

  • Kadhem, F. A., Specht, J. E., & Williams, J. H. (1985). Soybean irrigation serially timed during stages R1 to R6. l. Agronomic responses. Agronomy Journal, 77(2), 291–298. https://doi.org/10.2134/agronj1985.00021962007700020026x.

    Article  Google Scholar 

  • Kogan, F. N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. B American Meteorological Society, 76(5), 655–668. https://doi.org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2.

    Article  Google Scholar 

  • Korte, L. L., Specht, J. E., Williams, J. H., & Sorenson, R. C. (1983). Irrigation of soybean genotypes during reproductive ontogeny. II. Yield component responses. Crop Science, 23(3), 528–533. https://doi.org/10.2135/cropsci1983.0011183X002300030020x.

    Article  Google Scholar 

  • Kumar, V. (1999). Prediction of agricultural drought for the Canadian prairies using climatic and satellite data, Doctor Thesis, Department of Geography, University of Manitoba.

  • Kumar, V., & Panu, U. (1997). Predictive assessment of severity of agricultural droughts based on agro-climatic factors. Journal of the American Water Resources Association, 33(6), 1255–1264. https://doi.org/10.1111/j.1752-1688.1997.tb03550.x.

    Article  CAS  Google Scholar 

  • Mavromatis, T. (2007). Drought index evaluation for assessing future wheat production in Greece. International Journal of Climate, 27(7), 911–924.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Preprints, Eighth Conference on Applied Climatology (pp. 179–184). Am. Meteorol. Soc., Anaheim.

  • Meyer, S. J., & Hubbard, K. G. (1995). Extending the crop specific drought index to soybean. Reprints of the ninth conference on applied climatology, American Meteorological Society, 20–21.

  • Meyer, S. J., Hubbard, K. G., & Wilhite, D. A. (1993). A crop-specific drought index for corn: I. Model development and validation. Agronomy Journal, 86, 388–395.

    Article  Google Scholar 

  • Murthy, et al. (2015). A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India. Environment Monitoring Assessment, 187(3), 140–153. https://doi.org/10.1007/s10661-015-4296-x.

    Article  CAS  Google Scholar 

  • Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of soil moisture deficit index and evapotranspiration deficit index for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1-4), 69–88. https://doi.org/10.1016/j.agrformet.2005.07.012.

    Article  Google Scholar 

  • Nicholson, S. E., & Farrar, T. J. (1994). The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana: I. NDVI response to rainfall. Remote Sensing of Environment, 50(2), 107–120. https://doi.org/10.1016/0034-4257(94)90038-8.

    Article  Google Scholar 

  • Parker, M. W., & Borthwick, H. A. (1943). Influence of temperature on photoperiodic reactions in leaf blades of Biloxi soybean. Botanical Gazette, 104(4), 612–619. https://doi.org/10.1086/335174.

    Article  Google Scholar 

  • Pederson, P. (2004). Soybean growth and development. Publ. PM-1945. Iowa State University Extension.

  • Potop, V., Mozny, M., & Soukup, J. (2012). Drought evolution at various time scales in the lowland regions and their impact on vegetable crops in the Czech Republic. Agricultural and Forest Meteorology, 156, 121–133. https://doi.org/10.1016/j.agrformet.2012.01.002.

    Article  Google Scholar 

  • Quiring, S. M., & Papakryiskou, T. N. (2005). Characterizing the spatial and temporal variability of June-July moisture conditions in the Canadian prairies. International Journal of Climate, 25, 117–138.

    Article  Google Scholar 

  • Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: II. Software. Agronomy Journal., 101, 438–447. https://doi.org/10.2134/agronj2008.0140s.

    Article  Google Scholar 

  • Reicosky, D. C., Reicosky, D. C., & Heatherly, L. G. (1990). Soybean. In B. A. Stewart, D. R. Nielsen (Eds.), Irrigation of agricultural crops. Agronomy monograph no. 30. Am. Soc. Agron. 639–674.

  • Robinson, J. M., & Hubbard, I. G. (1990). Soil water assessment model for several crops in the high plains. Agronomy Journal, 82(6), 1141–1148. https://doi.org/10.2134/agronj1990.00021962008200060024x.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS, Third ERTS Symposium, NASA SP-351 I, 309–317.

  • Saaty, T. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5.

    Article  Google Scholar 

  • Sehgal, V. K., & Dhakar, R. (2016). Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations. Environmental Monitoring and Assessment, 188(3), 197–215. https://doi.org/10.1007/s10661-016-5187-5.

    Article  Google Scholar 

  • Seiler, R. A., Kogan, F., & Wei, G. (2000). Monitoring weather impact and crop yield from NOAA AVHRR data in Argentina. Advances in Space Research, 26(7), 1177–1185. https://doi.org/10.1016/S0273-1177(99)01144-8.

    Article  Google Scholar 

  • Shewale, M. P., & Kumar, S. (2005). Climatological features of drought incidences in India. Meteorological monograph. Climatology no. 21/2005.

  • Srivastava, A. K., Naidu, D., Sastry, A. S. R. A. S., Urkurkar, J. S., Gupta, B. D. (1996). Effects of water stress on soybean productivity in central India. Drought Network News, February 1996.

  • Steinemann, A. C., Hayes, M., & Cavalcanti, L. (2005). Drought indicators and triggers. In D. A. Wilhite (Ed.), Drought and water crises: science, technology, and management issues (pp. 71–92). New York: CRC.

    Google Scholar 

  • Sun, L., Mitchell, S. W., & Davidson, A. (2011). Multiple drought indices for agricultural drought risk assessment on the Canadian prairies. International Journal of Climate, 32(11), 1628–1639.

    Article  Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94. https://doi.org/10.2307/210739.

    Article  Google Scholar 

  • Tsakiris, G., & Vangelis, H. (2004). Towards a drought watch system based on spatial SPI. Water Resources Management, 18(1), 1–12. https://doi.org/10.1023/B:WARM.0000015410.47014.a4.

    Article  Google Scholar 

  • Unganai, L. S., & Kogan, F. N. (1998). Southern Africa’s recent droughts from space. Advances in Space Research, 21(3), 507–511. https://doi.org/10.1016/S0273-1177(97)00888-0.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Begueria, S., & Lopez-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.

    Article  Google Scholar 

  • Voogd, H. (1983). Multi-criteria evaluation for urban and regional planning. London: Pion.

    Google Scholar 

  • Wang, J., Price, K. P., & Rich, P. M. (2001). Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. International Journal of Remote Sensing, 22(18), 3827–3844. https://doi.org/10.1080/01431160010007033.

    Article  Google Scholar 

  • Wu, H., Hubbard, K. G., & Wilhite, D. (2004). An agricultural drought risk-assessment model for corn and soybeans. Int Journal of Climate, 24, 723–741.

    Article  Google Scholar 

Download references

Acknowledgements

The research work was supported by All India Coordinated Research Project on Agrometeorology (AICRPAM), Indian Council of Agricultural Research (ICAR). The first author would like to thank Dr. V.K. Sehgal as he guided me on the research topic of same field during the M.Sc. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Dhakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhakar, R., Sarath Chandran, M.A., Nagar, S. et al. Probabilistic assessment of phenophase-wise agricultural drought risk under different sowing windows: a case study with rainfed soybean. Environ Monit Assess 189, 645 (2017). https://doi.org/10.1007/s10661-017-6371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6371-y

Keywords