Skip to main content

Advertisement

Log in

Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Various organisms are adversely affected when subjected to chronic fluoride exposure. This highly electronegative ion present in several insecticide formulations is found to be lethal to target pests. In the present study, Drosophila melanogaster is treated with sub-lethal concentrations of a diamide insecticide formulation, Flubendiamide. Chronic exposure to the diamide (0.5–100 μg/mL) was found to be responsible for increase in fluoride ion concentration in larval as well as adult body fluid. Interestingly, 100 μg/mL Flubendiamide exposure resulted in 107 and 298% increase in fluoride ion concentration whereas only 23 and 52% of Flubendiamide concentration increase in larval and adult body fluid, respectively. Further, in this study, selected life cycle parameters like larval duration, pupal duration and emergence time showed minimal changes, whereas percentage of emergence and fecundity revealed significant treatment-associated variation. It can be noted that nearly 79% reduction in fecundity was observed with 100 μg/mL Flubendiamide exposure. The variations in these parameters indicate probable involvement of fluoride ion in detectable alterations in the biology of the non-target model insect, D. melanogaster. Furthermore, the outcomes of life cycle study suggest change in resource allocation pattern in the treated flies. The altered resource allocation might have been sufficient to resist changes in selective life cycle parameters, but it could not defend the changes in fecundity. The significant alterations indicate a definite trade-off pattern, where the treated individuals happen to compromise. Thus, survival is apparently taking an upper hand in comparison to reproductive ability in response to Flubendiamide exposure.

The figure demonstrates increase in Fluoride and Flubendiamide concentrations in Drosophila melanogaster after chronic sub-lethal exposure to Flubendiamide. Treatment-induced alterations in larval and pupal duration, reduction in fecundity and alteration in male-female ratio is also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguila, J. R., Suszko, J., Gibbs, A. G., & Hoshizaki, D. K. (2007). The role of larval fat cells in adult Drosophila melanogaster. Journal of Experimental Biology, 210, 956–963.

    Article  Google Scholar 

  • Arnot, J. A., & Gobas, F. A. P. C. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews, 14, 257–297. https://doi.org/10.1139/A06-005.

    Article  CAS  Google Scholar 

  • Australian Pesticides and Veterinary Medicines Authority (2009). Public release summary on “Evaluation of the new active Flubendiamide in the product/s Belt 480 SC insecticide & Belt 240 WG insecticide”, Canberra.

  • Basic methods of culturing Drosophila, updated 30/3/2007, Bloomington Drosophila Stock Center, Indiana University.

  • Benford, D. J., Hanley, A. B., Bottrill, K., Oehlschlager, S., Ball, M., Branca, F., Castegnaro, J. J., Descotes, J., Hemminiki, K., Lindsay, D., & Schilter, B. (2000). Biomarkers as predictive tools in toxicity testing. ATLA, 28, 119–131.

    Google Scholar 

  • Chandrashekara, K. T., & Shakarad, M. N. (2011). Aloe vera or resveratrol supplementation in larval diet delays adult aging in the fruit fly, Drosophila melanogaster. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. https://doi.org/10.1093/gerona/glr103.

  • Chen, Y. (2003a). Variable tolerance of the silkworm Bombyx mori to atmospheric fluoride pollution. Fluoride, 36, 157–162.

    CAS  Google Scholar 

  • Chen, Y. (2003b). Differences in fluoride effects on fecundity among varieties of the silkworm Bombyx mori. Fluoride, 36(3), 163–169.

    CAS  Google Scholar 

  • Cui, L., Rui, C., Yang, D., Wang, Z., & Yuan, H. (2017). De novo transcriptome and expression profile analyses of the Asian corn borer (Ostrinia furnacalis) reveals relevant flubendiamide response genes. BMC Genomics, 18(1), 20.

    Article  Google Scholar 

  • Das, S. K., Podder, S., & Roy, S. (2010). Effect of fungicide, Thiovit® Jet on several life history trait of Drosophila melanogaster (Diptera: Drosophilidae). Journal of Applied Biological Sciences, 4, 31–36.

    Google Scholar 

  • Das, S. K., Podder, S., Akbari, S., & Roy, S. (2011). Impact of Thiovit-Jet treatment on HSP70 expression, as a stress indicator, in transgenic Drosophila melanogaster. Proceedings of the Zoological Society, 64, 17–22.

    Article  Google Scholar 

  • Dutta, M., Das, S., & Roy, S. (2014a). Structural alterations in compound eye of Drosophila melanogaster in response to sodium fluoride treatment. Toxicological and Environmental Chemistry, 96, 106–113.

    Article  CAS  Google Scholar 

  • Dutta, M., Sarkar, S., & Roy, S. (2014b). Sodium fluoride induced alteration in lifecycle parameters and compound eye morphology of Drosophila melanogaster and trans-generational transmission of the altered eye architecture. Journal of International Academic Research for Multidisciplinary, 2, 247–259.

    Google Scholar 

  • Dutta, M., Rajak, P., Khatun, S., & Roy, S. (2017). Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure. Chemosphere, 166, 255–266. https://doi.org/10.1016/j.chemosphere.2016.09.112.

    Article  CAS  Google Scholar 

  • Ebbinghaus-Kintscher, U., Luemmen, P., Lobitz, N., Schulte, T., Funke, C., Fischer, R., Masaki, T., Yasokawa, N., & Tonishi, M. (2006). Phthalic acid diamides activate ryanodine sensitive Ca2+ release channels in insect. Cell Calcium, 39, 21–33.

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority). (2010). Reasoned opinion of EFSA: modification of the existing MRLs for Flubendiamide in various food commodities. EFSA Journal, 8(12), 1960 (45). https://doi.org/10.2903/j.efsa.2010.1960.

    Article  Google Scholar 

  • Festing, M. F. H., Baumans, V., Combes, D. R., Halder, M., Hendricsen, F. M., & Howard, B. R. (1998). Reducing the use of laboratory animals in biomedical research: problems and possible solutions. ATLA, 26, 283–301.

    CAS  Google Scholar 

  • Gerdes, R. A. (1971). The influence of atmospheric hydrogen fluoride on the frequency of sex-linked recessive lethals and sterility in Drosophila melanogaster. Fluoride, 4, 25–29.

    CAS  Google Scholar 

  • Government of India, Ministry of Agriculture, Department of Agriculture & Cooperation (2009). Directorate of plant protection, quarantine & storage, central insecticide board & registration committee, N.H. iv, Faridabad-121 001, registered under the insecticides act, 1968. Accessed on April 1 2017. http://www.cibrc.nic.in/mupi.pdf.

  • Guo, X. Y., Sun, G. F., & Sun, Y. C. (2003). Oxidative stress from fluoride induced hepatotoxicity in rats. Fluoride, 36, 25–29.

    CAS  Google Scholar 

  • Gutknecht, J., & Walter, A. (1981). Hydrofluoric and nitric acid transport through lipid bilayer membranes. Biochimica et Biophysica Acta, 644(1), 153–156.

    Article  CAS  Google Scholar 

  • Hanhijarvi, H. (1974). The effect of renal diseases on the free ionized plasma fluoride concentrations in patients from anb artificially fluoridated and non-fluoridated drinking water community. Proceedings of the Finnish Dental Society, 70, 35–43.

    Google Scholar 

  • Huang, H., Smilowitz, Z., & Saunders, M. C. (1995). Toxicity and field efficacy of cryolite against Colorado potato beetle (Coleoptera: Chrysomelidae) larvae. Journal of Economic Entomology, 88(5), 1408–1414.

    Article  CAS  Google Scholar 

  • Lai, T., & Su, J. (2011). Effects of chlorantraniliprole on development and reproduction of beet armyworm, Spodoptera exigua (Hübner). Journal of Pest Science, 84, 381–386.

    Article  Google Scholar 

  • Mitchell, B., & Gerdes, R. A. (1973). Mutagenic effects of sodium and stannous fluoride upon Drosophila melanogaster. Fluoride, 6, 113–117.

    CAS  Google Scholar 

  • Nadda, G., Saxena, P. N., & Srivastava, G. (2005). Effect of sublethal doses of beta-cyfluthrin on mutant Drosophila melanogaster (Diptera: Drosophilidae). Applied Entomology and Zoology, 40(2), 265–271. https://doi.org/10.1303/aez.2005.265.

    Article  CAS  Google Scholar 

  • Nirmalakallagadda, & Rathnamma, V. (2014). Flubendiamide a phthalic acid diamide effect on protein metabolism of freshwater fish Labeo rohita (Hamilton). International Journal of Recent Scientific Research, 5(9), 1554–1557.

    Google Scholar 

  • Nishimatsu, T., Hirooka, T., Kodama, H., Tonishi, M., & Seo, S. (2005). Flubendiamide a new insecticide for controlling lepidopterous pests. In BCPC International Congress: Crop Science and Technology, 5764. Glasgow: British Crop Protection Council.

  • Podder, S., & Roy, S. (2013). Study of the changes in life cycle parameters of Drosophila melanogaster exposed to fluorinated insecticide, cryolite. Toxicology and Industrial Health. https://doi.org/10.1177/0748233713493823.

  • Podder, S., & Roy, S. (2014). Exposure-dependent variation in cryolite induced lethality in the non-target insect, Drosophila melanogaster. Interdisciplinary Toxicology, 7, 17–22.

    Article  CAS  Google Scholar 

  • Podder, S., Akbari, S., & Roy, S. (2012). Cryolite induced morphological change in the compound eye of Drosophila melanogaster. Fluoride, 45, 58–64.

    CAS  Google Scholar 

  • Rajak, P., Sahana, S., & Roy, S. (2013). Acephate-induced shortening of developmental duration and early adult emergence in a non-target insect Drosophila melanogaster. Toxicology and Environtal Chemistry, 95, 1369–1379.

    Article  CAS  Google Scholar 

  • Rajak, P., Dutta, M., & Roy, S. (2014). Effect of acute exposure of acephate on hemocyte abundance in a non-target victim Drosophila melanogaster. Toxicology and Environtal Chemistry, 96(5), 768–776.

    Article  CAS  Google Scholar 

  • Rand, M. D. (2010). Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicology and Teratology, 32(1), 74.

    Article  CAS  Google Scholar 

  • Sarkar, S., Dutta, M., & Roy, S. (2015a). Potential toxicity of Flubendiamide in Drosophila melanogaster and associated structural alterations of its compound eye. Toxicology and Environtal Chemistry, 96, 1075–1087.

    Article  Google Scholar 

  • Sarkar, S., Podder, S., & Roy, S. (2015b). Flubendiamide-induced HSP70 expression in transgenic Drosophila melanogaster (hsp70-lacZ). Current Science, 108(11), 2044–2050.

    Google Scholar 

  • Sattar, S., Farmanullah, Saljoqi, A. R., Arif, M., Sattar, H., & Qazi, J. I. (2011). Toxicity of some new insecticides against Trichogramma chilonis (Hymenoptera: Trichogrammatidae) under laboratory and extended laboratory conditions. Pakistan Journal of Zoology, 43(6), 1117–1125.

    CAS  Google Scholar 

  • Sisodia, S., & Singh, B. N. (2012). Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae. PLoS One, 7(10), e46131. https://doi.org/10.1371/journal.pone.0046131.

    Article  CAS  Google Scholar 

  • Stechert, C., Kolb, M., Rödel, M. O., & Bahadir, M. (2015). Effects of insecticide formulations used in cotton cultivation in West Africa on the development of flat-backed toad tadpoles (Amietophrynus maculatus). Environmental Science and Pollution Research, 22(4), 2574–2583.

    Article  CAS  Google Scholar 

  • Sternweis, P. C., & Gilman, A. G. (1982). Aluminium: a requirement for activation of regulatory component of adenylate cyclase by fluoride. Proceedings of the National Academy of Sciences of the United States of America, 79, 4888–4891.

    Article  CAS  Google Scholar 

  • Sullivan, K. M. C., Scott, K., Zuker, C. S., & Rubin, G. M. (2000). The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 5942–5947.

    Article  CAS  Google Scholar 

  • Tohnishi, M., Nakao, H., Furuya, T., Seo, A., Kodama, H., Tsubata, K., Fujioka, S., Kodama, H., Hirooka, T., & Nishimatsu, T. (2005). Flubendiamide, a novel insecticide highly active against lepidopterous insect pests. PSSJ, 30, 354–360.

    CAS  Google Scholar 

  • Tsikolia, M., Berniera, U. R., Coya, M. R., Chalaireb, K. C., Becnela, J. J., Agramontea, N. M., Tabancac, N., Wedged, D. E., Clarka, G. G., Linthicuma, K. J., Swalee, D. R., & Bloomquiste, J. R. (2013). Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides. Pesticide Biochemistry and Physiology, 107, 138–147. https://doi.org/10.1016/j.pestbp.2013.06.006.

    Article  CAS  Google Scholar 

  • USEPA (United States of Environmental Protection Agency) (2010). Accessed March 28, 2017 http://www.gpo.gov/fdsys/pkg/FR-2010-11-05/html/2010-27998.html.

  • Wanumen, A. C., Sánchez-Ramos, I., Viñuela, E., Medina, P., & Adán, Á. (2016). Impact of feeding on contaminated prey on the life parameters of Nesidiocoris tenuis (Hemiptera: Miridae) adults. Journal of Insect Science, 16(1), 103.

    Article  Google Scholar 

  • Wene, G., & Hansberry, R. (1944). Toxicity of cryolite to Mexican bean beetle larvae. Journal Economic Entomology, 37(5), 656–659.

    Article  CAS  Google Scholar 

  • Whitford, G. M., Bawden, J. W., Bowen, W. H., Brown, L. J., Ciardi, J. E., Clarkson, T. W., Imrey, P. B., Kleerekoper, M., Marthaler, T. M., McGuire, S., Ophaug, R. H., Robinson, C., Schultz, J. S., Stookey, G. K., Tochman, M. S., Venkateswarlu, P., & Zero, D. T. (1994). Report for working group I: strategies for improving the assessment of fluoride accumulation in body fluids and tissues. Advances in Dental Research, 8, 113–115.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the head, DST-FIST- and UGC DSR-sponsored Department of Zoology, The University of Burdwan, for providing the infrastructural facilities during the course of the work. We thank Dr. A Mazumdar, BU, for extending the environmental chamber facility required for the fly culture. Dr. G Aditya is also thankfully acknowledged for his kind help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumedha Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Roy, S. Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster . Environ Monit Assess 189, 557 (2017). https://doi.org/10.1007/s10661-017-6287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6287-6

Keywords

Navigation