Skip to main content

Advertisement

Log in

Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)—wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the ‘best-adaptive N rate’ (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N2O and CO2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bhatia, A., Sasmal, S., Jain, N., Pathak, H., Kumar, R., & Singh, A. (2010). Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agriculture, Ecosystem & Environment, 136, 247–253.

    Article  CAS  Google Scholar 

  • Bhatia, A., Ghosh, A., Kumar, V., Tomer, R., Singh, S. D., & Pathak, H. (2011). Effect of elevated tropospheric ozone on methane and nitrous oxide emission from rice soil in north India. Agriculture, Ecosystems & Environment, 144, 21–28.

    Article  CAS  Google Scholar 

  • Bhattacharyya, R., Das, T. K., Sudhishri, S., Dudwal, B., Sharma, A. R., Bhatia, A., & Singh, G. (2015). Conservation agriculture effects on soil organic carbon accumulation and crop productivity under a rice–wheat cropping system in the western Indo-Gangetic Plains. European Journal of Agronomy, 70, 11–21.

    Article  Google Scholar 

  • Bijay-Singh, Sharma, R. K., Kaur, J., Jat, M. L., Yadvinder-Singh, Varinderpal-Singh, et al. (2011). In-season estimation of yield and nitrogen management in irrigated wheat using a hand-held optical sensor in the Indo-Gangetic plains of South Asia. Agronomy for Sustainable Development, 31, 589–603.

    Article  CAS  Google Scholar 

  • Bijay-Singh, Varinderpal-Singh, Purba, J., Sharma, R. K., Jat, M. L., Yadvinder-Singh, et al. (2015). Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precision Agriculture, 16, 455–475.

    Article  Google Scholar 

  • Cao, Q., Cui, Z., Chen, X., Khosla, R., Dao, T. H., & Miao, Y. (2012). Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precision Agriculture, 13, 45–61.

    Article  Google Scholar 

  • Chauhan, B. S., Singh, R. G., & Gulshan, M. G. (2012). Ecology and management of weeds under conservation agriculture: A review. Crop Protection, 38, 57–65.

    Article  Google Scholar 

  • Das, T. K., & Yaduraju, N. T. (1999). Effect of weed competition on the growth, nutrient uptake and yield of wheat as affected by irrigation and fertilizers. Journal of Agricultural Science (Cambridge), 133, 45–51.

    Article  Google Scholar 

  • Das, T. K., Bhattacharyya, R., Sharma, A. R., Das, S., Saad, A. A., & Pathak, H. (2013). Impacts of conservation agriculture on total soil organic carbon retention potential under an irrigated agro-ecosystem of the western Indo-Gangetic Plains. European Journal of Agronomy, 51, 34–42.

    Article  Google Scholar 

  • Dendooven, L., Patino-Zúniga, L., Verhulst, N., Luna-Guido, M., Marsch, R., & Govaerts, B. (2012). Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agriculture Ecosystem and Environment, 152, 50–58.

    Article  Google Scholar 

  • Drinkwater, L. E., Janke, R. R., & Rossoni-Longnecker, L. (2000). Effects of tillage intensity on nitrogen dynamics and productivity in legume-based grain systems. Plant and Soil, 227, 99–113.

    Article  CAS  Google Scholar 

  • Ellert, B. H., & Janzen, H. H. (2008). Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer. Canadian Journal of Soil Science, 88, 207–217.

    Article  CAS  Google Scholar 

  • Flower, K. C., Cordingley, N., Ward, P. R., & Weeks, C. (2013). Nitrogen, weed management and economics with cover crops in conservation agriculture in a Mediterranean climate. Field Crops Research, 132, 63–75.

    Article  Google Scholar 

  • Gupta, D. K., Bhatia, A., Kumar, A., Das, T. K., Jain, A., Tomer, R., Malyan, S. K., Fagodiya, R. K., Dubey, R., & Pathak, H. (2016). Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: Through tillage, irrigation and fertilizer management. Agriculture, Ecosystems and Environment, 230, 1–9.

    Article  Google Scholar 

  • IPCC. (2007). Synthesis Report of fourth assessment Report of the intergovernmental Panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Küstermann, B., Munch, J. C., & Hülsbergen, K. J. (2013). Effects of soil tillage and fertilization on resource efficiency and greenhouse gas emissions in a long-term field experiment in southern Germany. European Journal of Agronomy, 49, 61–73.

    Article  Google Scholar 

  • Ladha, J. K., Dawe, D., Ventura, T. S., Singh, U., Ventura, W., & Wetanabe, I. (2000). Long-term effects of urea and green manure on rice yields and nitrogen balance. Soil Science Society of American Journal, 64, 1993–2001.

    Article  CAS  Google Scholar 

  • Lal, R. (2015). Sequestering carbon and increasing productivity by conservation agriculture. Journal of Soil Water Conservation, 70(3), 55A–62A.

    Article  Google Scholar 

  • Lundy, M. E., Pittelkow, C. M., Linquist, B. A., Liang, X., van Groenigen, K. J., Lee, J., et al. (2015). Nitrogen fertilization reduces yield declines following no-till adoption. Field Crops Research, 83, 204–210.

    Article  Google Scholar 

  • Mashingaidze, N., Madakadze, C., Twomlow, S., Nyamangara, J., & Hove, L. (2012). Crop yield and weed growth under conservation agriculture in semi-arid Zimbabwe. Soil Tillage Research, 124, 102–110.

    Article  Google Scholar 

  • Mulvaney, R. L., Khan, S. A., & Ellsworth, T. R. (2006). Need for a soil-based approach in managing nitrogen fertilizers for profitable corn production. Soil Science Society of American Journal, 70, 172–182.

    Article  CAS  Google Scholar 

  • Nichols, V., Verhulst, N., Cox, R., & Govaerts, B. (2015). Weed dynamics and conservation agriculture principles: A review. Field Crops Research, 183, 56–68.

    Article  Google Scholar 

  • Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., Van Groenigen, K. J., Lee, J., et al. (2015). When does no-till yield more? A global meta-analysis. Field Crops Research, 183, 156–168.

    Article  Google Scholar 

  • Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agriculture Ecosystem & Environment, 220, 164–174.

    Article  CAS  Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.

    Article  Google Scholar 

  • Rouse, J.W., Hass, R.H., Schell, J.A., & Deering, D.W. (1973). Monitoring vegetation systems in the Great Plains with ERTS, Third ERTS symposium, NASA, SP-3511-309–317.

  • Saad, A. A., Das, T. K., Rana, D. S., Sharma, A. R., Bhattacharyya, R., & Lal, K. (2016). Energy auditing of maize-wheat-greengram cropping system under conventional and conservation agriculture in irrigated north-western Indo-Gangetic Plains. Energy, 116, 293–305.

    Article  Google Scholar 

  • Sapkota, T. B., Majumdar, K., Jat, M. L., Kumara, A., Bishnoi, D. K., et al. (2014). Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Research, 155, 233–244.

    Article  Google Scholar 

  • Singh, S., Ladha, J. K., Gupta, R. K., Bhushan, L., Rao, A. N., Sivaprasad, B., & Singh, P. P. (2007). Evaluation of mulching, intercropping with Sesbania and herbicide use for weed management in dry-seeded rice (Oryza sativa L.) Crop Protection, 26, 518–524.

    Article  CAS  Google Scholar 

  • Sommer, R., Thierfelder, C., Tittonell, P., Hove, L., Mureithi, J., & Mkomwa, S. (2014). Fertilizer use should not be the fourth principle to define conservation agriculture. Field Crops Research, 169, 145–148.

    Article  Google Scholar 

  • Sondhia, S. (2014). Herbicides residues in soil, water, plants and non-targeted organisms and human health implications: An Indian perspective. Indian Journal of Weed Science, 46(1), 66–85.

    Google Scholar 

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Science, 25(8), 259–260.

    CAS  Google Scholar 

  • Susha, V. S., Das, T. K., & Sharma, A. R. (2014). Weed management in maize in western Indo-Gangetic Plains through tank-mix herbicide application. Indian Journal of Agricultural Science, 84(11), 1363–1368.

    CAS  Google Scholar 

  • The Montpellier Panel. (2013). Sustainable intensification: A new paradigm for African agriculture. London: Imperial College.

  • Vanlauwe, B., Wendt, J., Giller, K. E., Corbeels, M., Gerard, B., & Nolte, C. (2014). A fourth principle is required to define conservation agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crops Research, 155, 10–13.

    Article  Google Scholar 

  • WHO. (2009). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification. World Health Organisation.

  • Yadvinder-Singh, Singh, M., Sidhu, H. S., Humphrey, E., Thind, H. S., Jat, M. L., Blackwell, J., & Singh, V. (2015). Nitrogen management for zero till wheat with surface retention of rice residues in north-west India. Field Crops Research, 184, 183–191.

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the Africa Union & Indian Government for the fellowship. The Indian Council of Agricultural Research (ICAR)–Indian Agricultural Research Institute, New Delhi, is gratefully acknowledged for providing the facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Imoudu Oyeogbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyeogbe, A.I., Das, T.K., Bhatia, A. et al. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues. Environ Monit Assess 189, 198 (2017). https://doi.org/10.1007/s10661-017-5917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5917-3

Keywords

Navigation