Skip to main content
Log in

Photosynthetic pigment laser-induced fluorescence indicators for the detection of changes associated with trace element stress in the diatom model species Phaeodactylum tricornutum

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This work reports changes on cell number, growth rate, trace element content, chlorophyll a (Chl a) and carotenoid concentrations, and laser-induced fluorescence (LIF) spectra of Phaeodactylum tricornutum exposed to Co, Ni, Cu, Zn, Cd, Hg, Pb, and a mixture of all elements combined (Mix). The total levels of trace elements associated with the cells were significantly higher in the exposed than in control ones. Concomitantly, specific cell growth was significantly lower in exposed P. tricornutum, suggesting that trace elements affected the microalgae physiology. The LIF emission spectra showed two typical emission bands in red (683–698 nm) and far-red (725–730 nm) regions. Deviations in LIF spectra and changes in F685/F735 ratio were investigated as indicators of trace element-induced changes. Fluorescence intensity emitted by exposed microalgae decreased in far-red region when compared to control cells, suggesting Chl a damage and impairment of pigment biosynthesis pathways by trace elements, confirmed by Chl a and carotenoid concentration decrease. Significant increase in F685/F735 ratio was detected for all elements except Zn and more accentuated for Co, Hg, and Mix. Significant deviations in wavelength emission maxima in red region were also more significant (between 8 and 13 nm) for Co, Hg, and Mix. Growth changes agreed with deviations in LIF spectra and F685/F735 ratio, supporting their applicability as indicators. This study clearly shows F685/F735 ratio and the deviations in wavelength emission maxima as adequate trace element stress indicators and P. tricornutum as a promising biomonitor model species. LIF-based techniques can be used as time-saving, highly sensitive, and effective alternative tool for the detection of trace element stress, with potential for remote sensing and trace element contamination screening in marine coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal, A., Sharma, I., Tripathi, B.N., Munjal, A.K., Baunthiyal, M., & Sharma, V. (2012). Metal toxicity and Photosynthesis. In S. Itoh, P. Mohanty, K.N. Guruprasad (Eds.), Photosynthesis: overviews on recent progress and future perspectives (pp. 229–236), Chapter 6.

  • Apostol, S., Viau, A. A., Tremblay, N., Briantais, J.-M., Prasher, S., Parent, L.-E., & Moya, I. (2003). Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Canadian Journal of Remote Sensing, 29(1), 57–65.

    Article  Google Scholar 

  • Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113.

    Article  CAS  Google Scholar 

  • Barbini, R., Colao, F., Fantoni, R., Micheli, C., Palucci, A., & Ribezzo, S. (1998). Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton. ICES Journal of Marine Science, 55, 793–802.

    Article  Google Scholar 

  • Brand, L. E., Sunda, W. G., & Guillard, R. R. L. (1986). Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, 96, 225–250.

    Article  CAS  Google Scholar 

  • Buschmann, C. (2007). Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Research, 92, 261–271.

    Article  CAS  Google Scholar 

  • Cabrita, M. T., Raimundo, J., Pereira, P., & Vale, C. (2014). Immobilised Phaeodactylum tricornutum as biomonitor of trace element availability in the water column during dredging. Environmental Science and Pollution Research, 21(5), 3572–2581.

    Article  CAS  Google Scholar 

  • Cid, A., Herrero, C., Torres, E., & Abalde, J. (1995). Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquatic Toxicology, 31, 165–174.

    Article  CAS  Google Scholar 

  • Cid, A., Torres, E., Herrero, C., & Abalde, J. E. (1997). Disorders provoked by copper in the marine diatom Phaeodactylum tricornutum in short-time exposure assays. Cahiers de Biologie Marine, 38, 201–206.

    Google Scholar 

  • Cotté-Krieff, M.-H., Guieu, C., Thomas, A. J., & Martin, J.-M. (2000). Sources of Cd, Cu, Ni and Zn in Portuguese coastal waters. Marine Chemistry, 71, 199–214.

    Article  Google Scholar 

  • D’Ambrosio, N., Szábo, K., & Lichtenthaler, H. K. (1992). Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown. Radiation and Environmental Biophysics, 31, 51–62.

    Article  Google Scholar 

  • Dahn, H. G., Günther, K. P., & Lüdeker, W. (1992). Characterization of drought stress of maize and wheat canopies by means of resolved laser induced fluorescence. EARSel Advances in Remote Sensing, 1(2-II), 12–19.

    Google Scholar 

  • Davison, W., & Zhang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367, 546–548.

    Article  CAS  Google Scholar 

  • De Filippis, L. F., & Pallaghy, C. K. (1976). The effect a sublethal concentration of mercury and zinc on Chlorella. I. Growth characteristic and uptake of metals. Zeitschrift für Pflanzenphysiologie, 78, 197–207.

    Article  Google Scholar 

  • De Filippis, L. F., & Pallaghy, C. K. (1994). Heavy metals: sources and biological effects. In L. C. Rai & J. P. Gaur (Eds.), Advances in limnology series: algae and water pollution (pp. 31–77). Stuttgart: E. Scheizerbartsche Press.

    Google Scholar 

  • Deng, C. N., Zhang, D. Y., Pan, X. L., Chang, F. Q., & Wang, S. Z. (2013). Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus. Journal of Photochemistry and Photobiology B: Biology, 127(5), 1–7.

    Article  CAS  Google Scholar 

  • Doney, S. C. (2010). The growing human footprint on coastal and open-ocean biogeochemistry. Science, 328, 1512–1516.

    Article  CAS  Google Scholar 

  • Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30, 973–980.

    Article  CAS  Google Scholar 

  • Fisher, N. S. (1981). On the selection for heavy metal tolerance in diatoms from the Derwent Estuary, Tasmania. Australian Journal of Marine and Freshwater Research, 32, 555–561.

    Article  CAS  Google Scholar 

  • Franck, F., Juneau, P., & Popovic, R. (2002). Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochimica et Biophysica Acta, 1556, 239–246.

    Article  CAS  Google Scholar 

  • González-Dávila, M. (1995). The role of phytoplankton cells on the control of heavy metal concentration in seawater. Marine Chemistry, 48(3–4), 215–236.

    Article  Google Scholar 

  • Govindjee. (1995). Sixty-three years since Kautsky: chlorophyll a fluorescence. Australian Journal of Plant Physiology, 22, 131–160.

    Article  CAS  Google Scholar 

  • Guillard, R. R. L., & Ryther, J. H. (1962). Studies on marine planktonic diatoms, I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Canadian Journal of Microbiology, 8(2), 229–239.

    Article  CAS  Google Scholar 

  • Hannan, P. J., & Patouillet, C. (1972). Effect of mercury on algal growth rates. Biotechnology and Bioengineering, 14, 93–101.

    Article  CAS  Google Scholar 

  • Horvatić, J., & Peršić, V. (2007). The Effect of Ni2+, Co2+, Zn2+, Cd2+ and Hg2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test. Bulletin of Environmental Contamination and Toxicology, 79, 494–498.

    Article  Google Scholar 

  • Irmer, G. (1985). Zum einfluß der apparatefunktion auf die bestimmung von streuquerschnitten und lebensdauern aus optischen phononenspektren. Experimentelle Technik der Physik, 33, 501–506.

    CAS  Google Scholar 

  • Jakimska, A., Konieczka, P., Skóra, K., & Namieśnik, J. (2011). Bioaccumulation of metals in tissues of marine animals, Part I: the role and impact of heavy metals on organisms. Polish Journal of Environmental Studies, 20(5), 1117–1125.

    CAS  Google Scholar 

  • Kumar, K. S., Dahms, H.-U., Lee, J.-S., Kim, H. C., Lee, W. C., & Shin, K.-H. (2014). Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicology and Environmental Safety, 104, 51–71.

    Article  Google Scholar 

  • Küpper, H., Küpper, F., & Spiller, M. (1996). Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. Journal of Experimental Botany, 47(295), 259–266.

    Article  Google Scholar 

  • Küpper, H., Setlik, I., Spiller, M., Küpper, F. C., & Prasil, O. (2002). Heavy-metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. Journal of Phycology, 38, 429–441.

    Article  Google Scholar 

  • Lavrov, A., Utkin, A. B., Marques da Silva, J., Vilar, R., Santos, N. M., & Alves, B. (2012). Water stress assessment of cork oak leaves and maritime pine needles bases on LIF spectra. Optics and Spectroscopy, 112, 271–279.

    Article  CAS  Google Scholar 

  • Le Faucheur, S., Campbell, P. G. C., Fortin, C., & Slaveykova, V. (2014). Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling. Environmental Toxicology and Chemistry, 33(6), 1211–1224.

    Article  Google Scholar 

  • Lichtenthaler, H. K., & Rinderle, U. (1988). The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry, 19, S29–S85.

    Article  Google Scholar 

  • Lichtenthaler, H. K., Lang, M., Sowinska, M., Heisel, F., & Miehé, J. A. (1996). Detection of vegetation stress via a new high resolution fluorescence imaging system. Journal of Plant Physiology, 148(5), 599–612.

    Article  CAS  Google Scholar 

  • Machado, M. D., & Soares, E. V. (2014). Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquatic Toxicology, 147, 1–6.

    Article  CAS  Google Scholar 

  • Markina, Z. V., & Aizdaicher, N. A. (2006). Content of photosynthetic pigments, growth, and cell size of microalgae Phaeodactylum tricornutum in the copper-polluted environment. Russian Journal of Plant Physiology, 53(3), 305–309.

    Article  CAS  Google Scholar 

  • Maurya, R., & Gopal, R. (2008). Laser-induced fluorescence ratios of Cajanus cajan L. Under the stress of cadmium and its correlation with pigment content and pigment ratios. Applied Spectroscopy, 62(4), 433–438.

    Article  CAS  Google Scholar 

  • Maurya, R., Prasad, S. M., & Gopal, R. (2008). LIF technique offers the potential for the detection of cadmium-induced alteration in photosynthetic activities of Zea mays L. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 9, 29–35.

    Article  CAS  Google Scholar 

  • Mishra, K. B., & Gopal, R. (2005). Laser induced fluorescence spectra of leaves of wheat seedlings growing under cadmium stress. General and Applied Plant Physiology, 31, 181–196.

    Google Scholar 

  • Moreira, E. G., Vassilieff, I., & Vassilieff, V. S. (2001). Developmental lead exposure. Behavioral alterations in the short and long term. Neurotoxicology and Teratology, 23, 489–495.

    Article  CAS  Google Scholar 

  • Nyholm, N., & Källqvist, T. (1989). Methods for growth inhibition toxicity tests with freshwater algae. Environmental Toxicology and Chemistry, 8(8), 689–703.

    Article  CAS  Google Scholar 

  • OECD, Organisation for Economic Co-operation and Development, Freshwater algal and cyanobacteria, growth inhibition test - test guideline 201 (2002). OECD Guidelines for the testing of chemicals, Paris, France, 1(2), 1–25.

  • Pan, K., & Wang, W.-X. (2012). Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 421–422, 3–16.

    Article  Google Scholar 

  • Pandey, J. K., & Gopal, R. (2011). Laser-induced chlorophyll fluorescence and reflectance spectroscopy of cadmium treated Triticum aestivum L. Plants. Spectroscopy: An International Journal, 26(2), 129–139.

    Article  CAS  Google Scholar 

  • Pfϋndel, E. (1998). Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Research, 56, 185–195E.

    Article  Google Scholar 

  • Reed, R. H., & Gadd, G. M. (1989). Metal tolerance in eukaryotic and prokaryotic algae. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: evolutionary aspects (pp. 105–118). Boca Raton: CRC Press.

    Google Scholar 

  • Rogers, S. I., & Greenaway, B. A. (2005). UK perspective on the development of marine ecosystem indicators. Marine Pollution Bulletin, 50, 9–19.

    Article  CAS  Google Scholar 

  • Scarano, G., & Morelli, E. (2003). Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Science, 165, 803–810.

    Article  CAS  Google Scholar 

  • Schuerger, A. C., Capelle, G. A., Di Benedetto, J. A., Mao, C., Chi, N., Mark, T., Evans, D., Richards, J. T., Blank, T. A., & Stryjewski, E. C. (2003). Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote Sensing of Environment, 84, 572–588.

    Article  Google Scholar 

  • Smith, C. L., Steele, J. E., Stauber, J. L., Dianne, F., & Jolley, D. F. (2014). Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium. Aquatic Toxicology, 156, 211–220.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1968). A practical handbook of seawater analysis. Ottawa: Fisheries Research Board of Canada Bulletin, 167. 311 pp.

  • Subhash, N., & Mohanan, C. N. (1997). Curve fit analysis of chlorophyll fluorescence spectra: application to nutrient stress detection in sunflower. Remote Sensing of Environment, 60, 347–356.

    Article  Google Scholar 

  • Sunda, W. G. (1989). Trace metal interactions with marine phytoplankton. Biological Oceanography, 6(5–6), 411–442.

    Google Scholar 

  • Sunda, W. G., & Huntsman, S. A. (1998). Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Science of the Total Environment, 219(2–3), 165–181.

    Article  CAS  Google Scholar 

  • Thomas, W. H., Hollibaugh, J. T., Seibert, D. L. R., & Wallace, G. T., Jr. (1980). Toxicity of a mixture of ten metals to phytoplankton. Marine Ecology Progress Series, 2, 213–220.

    Article  CAS  Google Scholar 

  • Torres, E., Cid, A., Fidalgo, P., Herrero, C., & Abalde, J. (1997). Long-chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin. Aquatic Toxicology, 39, 231–246.

    Article  CAS  Google Scholar 

  • Tortell, P. D., & Price, N. M. (1996). Cadmium toxicity and zinc limitation in centric diatoms of the genus Thalassiosira. Marine Ecology Progress Series, 138, 245–254.

    Article  CAS  Google Scholar 

  • Vieira, S., Utkin, A. B., Lavrov, A., Santos, N. M., Vilar, R., Marques da Silva, J., & Cartaxana, P. (2011). Effects of intertidal microphytobenthos migration on biomass determination via laser-induced fluorescence. Marine Ecology Progress Series, 432, 45–52.

    Article  Google Scholar 

  • Watanabe, T., Machida, K., Suzuki, H., Kobayashi, M., & Honda, K. (1985). Photoelectrochemistry of metallochlorophylls. Coordination Chemistry Reviews, 64, 207–224.

    Article  CAS  Google Scholar 

  • Wollman, F. A. (2001). State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO Journal, 20(14), 3623–3630.

    Article  CAS  Google Scholar 

  • Zhang, H., & Davison, W. (1995). Performance characteristics of diffusion gradients in thin-film for the in situ measurement of trace-metalin aqueous solution. Analytical Chemistry, 67, 3391–3400.

    Article  CAS  Google Scholar 

  • Zhang, H., & Davison, W. (1999). Diffusional characteristics of hydrogels used in DGT and DET techniques. Analytica Chimica Acta, 398, 329–340.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.T. Cabrita express appreciation for the support from the “Fundação para a Ciência e a Tecnologia” (FCT), through Grant No. SFRH/BPD/50348/2009. C. Gameiro and this work were also funded by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) within the framework of the project BenthicLIF-Estuarine phytobenthic communities studied by laser induced fluorescence (PTDC/MAR/117929/2010). The authors would like to thank the anonymous reviewers for their constructive comments, which helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Cabrita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrita, M.T., Gameiro, C., Utkin, A.B. et al. Photosynthetic pigment laser-induced fluorescence indicators for the detection of changes associated with trace element stress in the diatom model species Phaeodactylum tricornutum . Environ Monit Assess 188, 285 (2016). https://doi.org/10.1007/s10661-016-5293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5293-4

Keywords

Navigation