Skip to main content
Log in

Multipesticide residue levels in UHT and raw milk samples by GC-μECD after QuEChER extraction method

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the present study, milk samples including raw and ultra-high temperature (UHT) processed milk were analyzed for pesticide residue levels, including five pesticides, viz chloripyrifos, endosulfan (α and β), profenofos and bifenthrin by gas chromatography microelectron capture detector (GC-μECD) after extraction by QuEChERS method. Further confirmation of the pesticide residue was done by GC-MS. The pesticide residual level in raw and UHT milk samples (n = 70) was determined in the range of 0.1–30 μg L−1. All UHT processed milk samples contain pesticide residues within permissible limit set by the World Health Organization (WHO); however, among raw milk samples, chloripyrifos (12 %), α (24 %), and β (14 %) endosulfan were found above the maximum residue limit (MRL). The estimated daily intake (EDI) of these four pesticide residues were also calculated as 1.32, 16.16, 5.30, 10.20, and 9.93 μg kg−1 body weight for chloripyrifos, endosulfan α, profenofos, endosulfan β, and bifenthrin, respectively. It is concluded that the raw milk samples showed higher prevalence of pesticide residues as compared to UHT processed milk.

Determination of pesticide residues in dairy milk by GC-μECD after QuEChERS extraction method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arias Estevez, M., Lopez Periago, E., Martinez Carballo, E., Simal Gandara, J., Juan Carlos, M., & Garcia Rio, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247–260. doi:10.1016/j.agee.2007.07.011.

    Article  CAS  Google Scholar 

  • Aslam, M., Rais, S., & Alam, M. (2013). Quantification of organochlorine pesticide residues in the buffalo milk samples of Delhi City, India. Journal of Environmental Protection, 4(9), 964–974. doi:10.4236/jep.2013.49111.

    Article  Google Scholar 

  • Aziz ul Hassan, Tabinda, A. B., Abbas, M., & Khan, A. M. (2014). Organochlorine and pyrethroid pesticides analysis in dairy milk samples collected from cotton growing belt of Punjab, Pakistan. Pakistan Journal of Agricultural Sciences, 51(2), 321–325.

    Google Scholar 

  • Bajwa, U., & Sandhu, K. S. (2014). Effect of handling and processing on pesticide residues in food—a review. Journal of Food Science and Technology, 51(2), 201–220. doi:10.1007/s13197-011-0499-5.

    Article  CAS  Google Scholar 

  • Bedi, J. S., Gill, J. P., Aulakh, R. S., & Kaur, P. (2015). Pesticide residues in bovine milk in Punjab, India: spatial variation and risk assessment to human health. Archives of Environmental Contamination and Toxicology, 69(2), 230–240. doi:10.1007/s00244-015-0163-6.

    Article  CAS  Google Scholar 

  • Bulut, S., Akkaya, L., Gok, V., & Konuk, M. (2011). Organochlorine pesticide (OCP) residues in cow’s, buffalo’s, and sheep’s milk from Afyonkarahisar region, Turkey. Environmental Monitoring and Assessment, 181(1–4), 555–562. doi:10.1007/s10661-010-1849-x.

    Article  CAS  Google Scholar 

  • Chen, X., Panuwet, P., Hunter, R. E., Riederer, A. M., Bernoudy, G. C., Barr, D. B., et al. (2014). Method for the quantification of current use and persistent pesticides in cow milk, human milk and baby formula using gas chromatography tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 970, 121–130. doi:10.1016/j.jchromb.2014.08.018.

    Article  CAS  Google Scholar 

  • Commission, C. A. (2013). Pesticide residues in food and feed by the and FAO/WHO Food standards, Codex Alimentarius.

  • Corcellas, C., Feo, M. L., Torres, J. P., Malm, O., Ocampo-Duque, W., Eljarrat, E., et al. (2012). Pyrethroids in human breast milk: occurrence and nursing daily intake estimation. Environment International, 47, 17–22.

    Article  CAS  Google Scholar 

  • Deti, H., Hymete, A., Bekhit, A. A., Mohamed, A. M. I., & Bekhit, A. E.-D. A. (2014). Persistent organochlorine pesticides residues in cow and goat milks collected from different regions of Ethiopia. Chemosphere, 106, 70–74. doi:10.1016/j.chemosphere.2014.02.012.

    Article  CAS  Google Scholar 

  • Economic Survey of Pakistan. (2006). Finance division. Islamabad: Government of Pakistan.

    Google Scholar 

  • Fang, G., Lau, H. F., Law, W. S., & Li, S. F. Y. (2012). Systematic optimisation of coupled microwave-assisted extraction-solid phase extraction for the determination of pesticides in infant milk formula via LC–MS/MS. Food Chemistry, 134(4), 2473–2480. doi:10.1016/j.foodchem.2012.04.076.

    Article  CAS  Google Scholar 

  • FAO/WHO Food Standards Programme, C. A. C. (2008). Report of the fortieth session of the Codex Committee on Pesticide Residues. Hangzhou, China.

  • Goodarzi, M., Ortiz, E. V., Coelho, L. D. S., & Duchowicz, P. R. (2010). Linear and non-linear relationships mapping the Henry’s law parameters of organic pesticides. Atmospheric Environment, 44(26), 3179–3186. doi:10.1016/j.atmosenv.2010.05.025.

    Article  CAS  Google Scholar 

  • Iftikhar, B., Siddiqui, S., & Rehman, S. (2014). Assessment of the dietary transfer of pesticides to dairy milk and its effect on human health. African Journal of Biotechnology, 13(3), 476–485.

    Article  Google Scholar 

  • John, P. J., Bakore, N., & Bhatnagar, P. (2001). Assessment of organochlorine pesticide residue levels in dairy milk and buffalo milk from Jaipur City, Rajasthan, India. Environment International, 26(4), 231–236. doi:10.1016/S0160-4120(00)00111-2.

    Article  CAS  Google Scholar 

  • Kalwar, N. H., Nafady, A., Sirajuddin, Sherazi, S. T. H., Soomro, R. A., Hallam, K. R., et al. (2015). Catalytic degradation of imidacloprid using L-serine capped nickel nanoparticles. Materials Express, 5(2), 121–128. doi:10.1166/mex.2015.1224.

    CAS  Google Scholar 

  • Kampire, E., Kiremire, B. T., Nyanzi, S. A., & Kishimba, M. (2011). Organochlorine pesticide in fresh and pasteurized cow’s milk from Kampala markets. Chemosphere, 84(7), 923–927. doi:10.1016/j.chemosphere.2011.06.011.

    Article  CAS  Google Scholar 

  • Khan, M., Mahmood, H. Z., & Damalas, C. A. (2015). Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Protection, 67, 184–190. doi:10.1016/j.cropro.2014.10.013.

    Article  Google Scholar 

  • Khwaja, S., Mushtaq, R., Mushtaq, R., Yousuf, M., Attaullah, M., Tabbassum, F., et al. (2013). Monitoring of biochemical effects of organochlorine pesticides on human health. Health, 05(8), 9. doi:10.4236/health.2013.58182.

    Article  Google Scholar 

  • Koesukwiwat, U., Lehotay, S. J., Miao, S., & Leepipatpiboon, N. (2010). High throughput analysis of 150 pesticides in fruits and vegetables using QuEChERS and low-pressure gas chromatography-time-of-flight mass spectrometry. Journal of Chromatography A, 1217(43), 6692–6703. doi:10.1016/j.chroma.2010.05.012.

    Article  CAS  Google Scholar 

  • Lehotay, S. J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 90(2), 485–520.

    CAS  Google Scholar 

  • Lehotay, S. J., Mastovska, K., Lightfield, A. R., & Gates, R. A. (2010a). Multi-analyst, multi-matrix performance of the QuEChERS approach for pesticide residues in foods and feeds using HPLC/MS/MS analysis with different calibration techniques. Journal of AOAC International, 93(2), 355–367.

    CAS  Google Scholar 

  • Lehotay, S. J., Son, K. A., Kwon, H., Koesukwiwat, U., Fu, W., Mastovska, K., et al. (2010b). Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A, 1217(16), 2548–2560. doi:10.1016/j.chroma.2010.01.044.

    Article  CAS  Google Scholar 

  • Luzardo, O. P., Almeida-Gonzalez, M., Henriquez-Hernandez, L. A., Zumbado, M., Alvarez-Leon, E. E., & Boada, L. D. (2012). Polychlorobiphenyls and organochlorine pesticides in conventional and organic brands of milk: occurrence and dietary intake in the population of the Canary Islands (Spain). Chemosphere, 88(3), 307–315. doi:10.1016/j.chemosphere.2012.03.002.

    Article  CAS  Google Scholar 

  • Martins, J. G., Amaya Chávez, A., Waliszewski, S. M., Colín Cruz, A., & García Fabila, M. M. (2013). Extraction and clean-up methods for organochlorine pesticides determination in milk. Chemosphere, 92(3), 233–246. doi:10.1016/j.chemosphere.2013.04.008.

    Article  CAS  Google Scholar 

  • Muhammad, F., Javed, I., Akhtar, M., Zia-ur-Rahman, Awais, M. M., Saleemi, M. K., et al. (2012). Quantitative structure activity relationship and risk analysis of some pesticides in the cattle milk. Pakistan Veterinary Journal, 32(4), 589–592.

    CAS  Google Scholar 

  • Muhammad, F., Awais, M. M., Akhtar, M., & Anwar, M. I. (2013). Quantitative structure activity relationship and risk analysis of some pesticides in the goat milk. Iranian Journal of Environmental Health Science & Engineering, 10(1), 4.

    Article  Google Scholar 

  • Muñoz-Quezada, M. T., Lucero, B. A., Barr, D. B., Steenland, K., Levy, K., Ryan, P. B., et al. (2013). Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review. Neurotoxicology, 39, 158–168. doi:10.1016/j.neuro.2013.09.003.

    Article  Google Scholar 

  • Pagliuca, G., Serraino, A., Gazzotti, T., Zironi, E., Borsari, A., & Rosmini, R. (2006). Organophosphorus pesticides residues in Italian raw milk. The Journal of Dairy Research, 73(3), 340–344. doi:10.1017/s0022029906001695.

    Article  CAS  Google Scholar 

  • Rejeb, S. B., Cléroux, C., Lawrence, J. F., Geay, P.-Y., Wu, S., & Stavinski, S. (2001). Development and characterization of immunoaffinity columns for the selective extraction of a new developmental pesticide: thifluzamide, from peanuts. Analytica Chimica Acta, 432(2), 193–200. doi:10.1016/S0003-2670(00)01376-3.

    Article  CAS  Google Scholar 

  • Rissato, S. R., Galhiane, M. S., Apon, B. M., & Arruda, M. S. (2005). Multiresidue analysis of pesticides in soil by supercritical fluid extraction/gas chromatography with electron-capture detection and confirmation by gas chromatography–mass spectrometry. Journal of Agricultural and Food Chemistry, 53(1), 62–69. doi:10.1021/jf048772s.

    Article  CAS  Google Scholar 

  • Sanagi, M. M., Salleh, S., Ibrahim, W. A. W., Naim, A. A., Hermawan, D., Miskam, M., et al. (2013). Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. Journal of Food Composition and Analysis, 32(2), 155–161. doi:10.1016/j.jfca.2013.09.001.

    Article  CAS  Google Scholar 

  • Sapahin, H. A., Makahleh, A., & Saad, B. (2014). Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography-flame photometric detector. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2014.12.001.

    Google Scholar 

  • Serrano, R., Blanes, M. A., & López, F. J. (2008). Biomagnification of organochlorine pollutants in farmed and wild gilthead sea bream (Sparus aurata) and stable isotope characterization of the trophic chains. Science of the Total Environment, 389(2–3), 340–349. doi:10.1016/j.scitotenv.2007.09.020.

    Article  CAS  Google Scholar 

  • Shahzadi, N., Imran, M., Sarwar, M., Hashmi, A. S., & Wasim, M. (2013). Identification of pesticides residues in different samples of milk. Journal of Agroalimentary Processes and Technologies, 19(2), 167–172.

    Google Scholar 

  • Stocka, J., Tankiewicz, M., Biziuk, M., & Namieśnik, J. (2011). Green aspects of techniques for the determination of currently used pesticides in environmental samples. International Journal of Molecular Sciences, 12(11), 7785–7805. doi:10.3390/ijms12117785.

    Article  CAS  Google Scholar 

  • Sun, H., Ge, X., Lv, Y., & Wang, A. (2012). Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. Journal of Chromatography, A, 1237, 1–23. doi:10.1016/j.chroma.2012.03.003.

    Article  CAS  Google Scholar 

  • Tariq, M. I., Afzal, S., Hussain, I., & Sultana, N. (2007). Pesticides exposure in Pakistan: a review. Environment International, 33(8), 1107–1122. doi:10.1016/j.envint.2007.07.012.

    Article  CAS  Google Scholar 

  • Tsiplakou, E., Anagnostopoulos, C. J., Liapis, K., Haroutounian, S. A., & Zervas, G. (2010). Pesticides residues in milks and feedstuff of farm animals drawn from Greece. Chemosphere, 80(5), 504–512. doi:10.1016/j.chemosphere.2010.04.069.

    Article  CAS  Google Scholar 

  • Zheng, G., Han, C., Liu, Y., Wang, J., Zhu, M., Wang, C., et al. (2014). Multiresidue analysis of 30 organochlorine pesticides in milk and milk powder by gel permeation chromatography-solid phase extraction-gas chromatography-tandem mass spectrometry. Journal of Dairy Science, 97(10), 6016–6026. doi:10.3168/jds.2014-8192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah N. Talpur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawaid, S., Talpur, F.N., Nizamani, S.M. et al. Multipesticide residue levels in UHT and raw milk samples by GC-μECD after QuEChER extraction method. Environ Monit Assess 188, 230 (2016). https://doi.org/10.1007/s10661-016-5222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5222-6

Keywords

Navigation