Skip to main content

Advertisement

Log in

Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha−1 h−1 year−1. Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3 % of the cluster has soil loss below 20 t ha−1 year−1. The soil loss from crop land varied from 2.9 to 3.6 t ha−1 year−1 in low rainfall years to 31.8 to 34.7 t ha−1 year−1 in high rainfall years with a mean annual soil loss of 12.2 t ha−1 year−1. The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha−1 year−1 in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3 % of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water using farm ponds and percolation tanks. This methodology can be adopted for estimating the soil loss from similar ungauged watersheds with deficient data and for planning suitable soil and water conservation interventions for the sustainable management of the watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almas, M., & Jamal, T. (2000). Use of RUSLE for soil loss prediction during different growth periods. Pakistan Journal of Biological Sciences, 3, 118–121.

    Article  Google Scholar 

  • Angima, S. D., Stott, D. E., O’neill, M. K., Ong, C. K., & Weesies, G. A. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems & Environment, 97(1), 295–308.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R., & Williams, J. R. (1998). Large areas hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association, 34(1), 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x.

    Article  CAS  Google Scholar 

  • Ascough, J., Baffaut, C., Nearing, M., & Liu, B. (1997). The WEPP watershed model: I. Hydrology erosion. Transactions of the American Society of Agricultural Engineers, 40(4), 921–933. doi:10.13031/2013.21343.

    Article  Google Scholar 

  • Farhan, Y., Zregat, D., & Farhan, I. (2013). Spatial estimation of soil erosion risk using RUSLE approach, RS, and GIS techniques: a case study of Kufranja Watershed, Northern Jordan. Journal of Water Resource and Protection, 5, 1247–1261.

    Article  Google Scholar 

  • Fu, B., Liu, Y., Lü, Y., He, C., Zeng, Y., & Wu, B. (2011). Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8(4), 284–293. doi:10.1016/j.ecocom.2011.07.003.

    Article  Google Scholar 

  • Htwe, T. N., Brinkmann, K., & Buerkert, A. (2015). Spatio-temporal assessment of soil erosion risk in different agricultural zones of the Inle Lake region, southern Shan State, Myanmar. Environmental Monitoring and Assessment, 187(10), 1–14.

    Article  Google Scholar 

  • Jong, S. D., Paracchini, M., Bertolo, F., Folving, S., Megier, J., & Rao, A. D. (1999). Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena, 37, 291–308. doi:10.1016/S0341-8162(99)00038-7.

    Article  Google Scholar 

  • Karaburun, A. (2010). Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean Journal of Applied Sciences, 3(1), 77–85.

    Google Scholar 

  • Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V., & Bernoux, M. (2015). Soil erosion in the humid tropics: a systematic quantitative review. Agriculture, Ecosystems & Environment, 203, 127–139.

    Article  Google Scholar 

  • Lal, R. (2003). Soil erosion and the global carbon budget. Environmental International, 29, 437–450.

    Article  CAS  Google Scholar 

  • Moore, & Wilson, J. P. (1992). Length slope factor for the revised universal soil loss equation: simplified method of solution. Journal of Soil and Water Conservation, 47(4), 423–428.

    Google Scholar 

  • Morgan, R. P. C. (2005). Soil erosion and conservation. Oxford: Wiley-Blackwell.

    Google Scholar 

  • Morgan, R., Quinton, J., Smith, R., Govers, G., Poesen, J., Auerswald, K., Chisci, G., Torri, D., & Styezen, M. (1998). The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23, 527–544.

    Article  Google Scholar 

  • NAIP Annual Report (2010). National Agricultural Innovation Project Annual report, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, India. www.crida.in/naip/pub/AR-2010.pdf

  • Niehoff, D., Fritsch, U., & Bronstert, A. (2002). Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. Journal of Hydrology, 267(1), 80–93.

    Article  Google Scholar 

  • Panigrahi, D., Acharya, M., & Senapati, P. C. (2009). Estimation of soil loss from croplands of Kandhamal Plateau in Orissa. Indian Journal of Dryland Agricultural Research and Development, 24(1), 52–56.

    Google Scholar 

  • Panigrahi, D., Mohanty, P. K., Acharya, M., & Senapati, P. C. (2010). Optimal utilization of natural resources for agricultural sustainability in rainfed hill plateaus of Orissa. Agricultural Water Management, 97(7), 1006–1016.

    Article  Google Scholar 

  • Patil, R. J., & Sharma, S. K. (2013). Remote sensing and GIS modelling of crop/cover management factor of USLE in Shakker river watershed. Proceedings of the International Conference on Chemical, Agricultural and Medical Sciences (CAMS-2013), Kuala Lumpur (Malaysia). http://dx.doi.org/10.15242/IICBE.C1213023

  • Patil, J. P., Sarangi, A., Singh, O. P., Singh, A. K., & Ahmad, T. (2008). Development of a GIS interface for estimation of runoff from watersheds. Water Resources Management, 22, 1221–1239. doi:10.1007/s11269-007-9222-8.

    Article  Google Scholar 

  • Prasannakumar, V., Vijith, H., Geetha, N., & Shiny, R. (2011). Regional scale erosion assessment of a sub tropical highland segment in the Western Ghats of Kerala, South India. Water Resources Management, 25, 3715–3727.

    Article  Google Scholar 

  • Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universl Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215.

    Article  Google Scholar 

  • Ramakrishnan, D., Bandyopadhyay, A., & Kusuma, K. N. (2009). SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. Journal of Earth System Science, 118(4), 355–368.

    Article  Google Scholar 

  • Reddy, R. S., Nalatwadmath, S.K., & Krishnan, P. (2005). Soil Erosion Andhra Pradesh. NBSS Publ. No. 114, NBSS&LUP, Nagpur, India, 76 pp.

  • Rejani, R., Rao, K. V., Osman, M., Chary, G. R., Pushpanjali, & Pratyusha, G. (2014). Spatial estimation of soil loss from Amistapur microwatershed in Mahabubnagar district of Telengana. In Proceedings of the 4th International Conference on Hydrology and Watershed Management (1), (Reddy, K.R., Rao, B.V. & Sarala, C. Eds.), (pp. 503–507), Jawaharlal Nehru Technological University Hyderabad, Allied Publishers Pvt. Ltd., New Delhi.

  • Rejani, R., Rao, K. V., Osman, M., Chary, G. R., Pushpanjali, Sammi Reddy, K., & Srinivasarao, C. (2015a). Spatial and temporal estimation of runoff in a semi-arid micro-watershed of Southern India. Environmental Monitoring and Assessment, 187(8), 1–16. doi:10.1007/s10661-015-4772-3.

    Article  CAS  Google Scholar 

  • Rejani, R., Rao, K. V., Osman, M., Chary, G. R., Pushpanjali, Sammi Reddy, K., & Srinivasa Rao, C. (2015b). Location specific identification of insitu soil and water conservation interventions for sustainable management of drylands. Journal of Agrometeorology, 17(1), 55–60.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D., & Yoder, D. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook No. 703. U.S. Department of Agriculture, Washington DC.

  • Sahoo, A. K., Sarkar, D., Sah, K. D., Maji, A. K., & Dhyani, B. L. (2005). Soil erosion of Orissa, NBSS Publ. No. 126, (48 pp.), NBSS&LUP, Nagpur, India.

  • Saptarshi, P. G., & Raghavendra, R. K. (2009). GIS-based evaluation of micro-watersheds to ascertain site suitability for water conservation structures. Journal of the Indian Society of Remote Sensing, 37(4), 693–704.

    Article  Google Scholar 

  • Schmidt, J., Werner, M., & Michael, A. (1999). Application of the EROSION 3D model to the CATSOP watershed, the Netherlands. Catena, 37(3), 449–456.

    Article  Google Scholar 

  • Sharma, A., Tiwari, K. N., & Bhadoria, P. B. S. (2011). Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environmental Monitoring and Assessment, 173, 789–801.

    Article  Google Scholar 

  • Srinivasarao, C., Venkateswarlu, B., Lal, R., Singh, A. K., & Kundu, S. (2013). Sustainable management of soils of dryland ecosystems of India for enhancing agronomic productivity and sequestering carbon, in Donald L. Sparks (Ed.). Advances in Agronomy, 121, 253–329.

    Article  CAS  Google Scholar 

  • Srinivasarao, Ch., Rejani, R., & Prasannakumar (2014). Climate resilient water management practices for improving water use efficiency and sustaining crop productivity. Proceedings of the National Workshop on Climate Change and Water- Improving water use efficiency, WALAMTARI Hyderabad, India, pp. 9–30

  • Sun, W., Shao, Q., Liu, J., & Zhai, J. (2014). Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121, 151–163.

    Article  Google Scholar 

  • Tirkey, A. S., Pandey, A. C., & Nathawat, M. S. (2013). Use of satellite data, GIS and RUSLE for estimation of average annual soil loss in Daltonganj watershed of Jharkhand (India). Journal of Remote Sensing Technology, 1(1), 20–30.

    Article  Google Scholar 

  • Van der Knijff, J. M., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk assessment in Europe. http://eusoils.jrc.ec.europa.eu/ESDB_Archive/pesera/pesera_cd/pdf/ereurnew2.pdf

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses—a guide to conservation planning. Agriculture Handbook No. 537 (pp. 163). US Department of Agriculture Science and Education Administration, Washington.

Download references

Acknowledgments

The authors express their sincere gratitude to National Remote Sensing Centre (NRSC), Hyderabad for providing the land use land cover map, and the data sources of ASTER DEM for providing the needful data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rejani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejani, R., Rao, K.V., Osman, M. et al. Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster. Environ Monit Assess 188, 143 (2016). https://doi.org/10.1007/s10661-016-5143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5143-4

Keywords

Navigation