Skip to main content
Log in

Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study presents the response of autotrophic pico- and nanoplankton to southwest monsoon-associated hydrographical transformations in the Cochin backwaters (CBW), the largest monsoonal estuary along the west coast of India. By the onset of the southwest monsoon, the euhaline/mesohaline conditions in the downstream/upstream of CBW usually transform into oligohaline/limnohaline. The flow cytometer analysis revealed the dominance of picoeukaryotes > Synechococcus > nanoautotrophs, with Prochlorococcus either very low or entirely absent. Synechococcus abundance was high during the pre-southwest monsoon (106 L−1), which dwindled with heavy fresh water influx during the southwest monsoon (105 L−1). The drastic drop in salinity and faster flushing of the CBW during the southwest monsoon replaced the euhaline/mesohaline strain of Synechococcus with an oligohaline/limnohaline strain. Epifluorescence microscopy analyses showed that, among the two strains of Synechococcus, the phycoerythrin-rich (PE-rich) one was dominant in the mesohaline/euhaline conditions, whereas the phycocyanin-rich (PC-rich) strain dominated in oligohaline/limnohaline conditions. Although Synechococcus abundance diminished during the southwest monsoon, the total abundance of picoplankton community remained virtually unchanged in the upstream due to an increase in the abundance of picoeukaryotes. On the other hand, the autotrophic nanoplankton abundance increased from pre-monsoon levels of av. 3.8 × 106–av. 9.5 × 106 L−1 at the onset of the southwest monsoon. Utilizing suitable multivariate analyses, the study illustrated the differential response and niche preference of various smaller communities of autotrophs to the southwest monsoon-associated hydrographical ramifications in a large monsoonal estuary, which may be applicable to similar such estuaries situated along the Indian coastline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahlgren, N. A., & Rocap, G. (2006). Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Applied and Environmental Microbiology, 72, 7193–7204.

    Article  CAS  Google Scholar 

  • Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., & Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257–263.

    Article  Google Scholar 

  • Badylak, S., & Philips, E. J. (2004). Spatial and temporal patterns of phytoplankton composition in a subtropical coastal lagoon, the Indian River Lagoon, Florida, USA. Journal of Plankton Research., 26, 1229–1247.

    Article  CAS  Google Scholar 

  • Birks, H. J. B. (1998). Numerical tools in palaeolimnology – progress, potentialities, and problems. Journal of Paleolimnology., 20, 307–332.

    Article  Google Scholar 

  • Bloem, J., Marie-Jose, B.-G., & Cappenberg, T. E. (1986). Fixation, counting, and manipulation of heterotrophic nanoflagellates. Applied Environmental Microbiology, 52, 1266–1272.

    CAS  Google Scholar 

  • Burkill, P. H., Leakey, R. J. G., Owens, N. J. P., & Mantoura, R. F. C. (1993). Synechococcus and its importance to the microbial food web of the northwestern Indian Ocean. Deep sea research part II., 40, 773–782.

    Article  Google Scholar 

  • Callieri, C., Amicucci, E., Bertoni, R., & Voros, L. (1996). Fluorometric characterization of two picocyanobacteria strains from different underwater light quality. International Revue der gesamten Hydrobiologie und Hydrographie, 81, 13–23.

    Article  CAS  Google Scholar 

  • Cermeno, P., Maranon, E., Perez, V., Serret, P., Fernandez, E., & Castr, C. G. (2006). Phytoplankton size structure and primary production in highly dynamic coastal ecosystem (Ria de Vigo, NW-Spain): Ssasonal and short-time scale variability. Estuarine Coastal and Shelf Science., 67, 251–266.

    Article  Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (1994). Similarity-based testing for community pattern: the 2-way layout with no replication. Marine Biology, 118, 167–176.

    Article  Google Scholar 

  • Ernst, A. (1991). Cyanobacterial picoplankton from Lake Constance: I. Isolation by fluorescence characteristics. Journal of Plankton Research, 13, 1307–1312.

    Article  Google Scholar 

  • Fuller, N. J., Marie, D., Partensky, F., Vaulot, D., Post, A. F., & Scanlan, D. J. (2003). Clade-specific 16S rDNA oligonucleotides reveal the predominance of an single marine Synechococcus clade throughout a stratified water column in the Red Sea. Applied Environmental Microbiology, 69, 2430–2443.

    Article  CAS  Google Scholar 

  • Grassholf, K., Ehrhardt, M., & Kremling, K. (1983). In K. Grassholf, M. Ehrhardt, & K. Kremling (Eds.), Methods of Seawater Analysis (pp. 89–224). Weinheim: Verlag Chemie.

    Google Scholar 

  • Jyothibabu, R., Madhu, N. V., Jayalakshmi, K. V., Balachandran, K. K., Shiyas, C. A., & Martin, G. D. (2006). Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters – India). Estuarine, Coastal and Shelf Science, 69, 505–18.

    Article  Google Scholar 

  • Jyothibabu, R., Mohan, A. P., Jagadeesan, L., Anjusha, A., Muraleedharan, K. R., Lallu, K. R., Krishna, K., & Ullas, N. (2013). Ecology and trophic preference of picoplankton and nanoplankton in the Gulf of Mannar and the Palk Bay, southeast coast of India. Journal of Marine Systems, 111-112, 29–44.

    Article  Google Scholar 

  • Jyothibabu, R, Madhu, NV, Martin, GD, Aneesh, C, Sooria, P, Vineetha, G. (2014). Waning of plankton food web in the upstream region of the Cochin backwaters during the southwest monsoon. Indian Journal of Marine Sciences. (In Press).

  • Jyothibabu, R., Madhu, N. V., Jagadeesan, L., Anjusha, A., Mohan, A. P., Ullas, N., Sudheesh, N., & Karnan, C. (2014b). Why do satellite imageries show exceptionally high chlorophyll in the Gulf of Mannar and the Palk Bay during the northeast monsoon? Environmental Monitoring Assessment, 186, 7781–7792.

    Article  CAS  Google Scholar 

  • Lampitt, R., Wishner, K. F., Turley, C. M., & Angel, M. V. (1993). Marine snow studies in the Northeast Atlantic: distribution composition and role as a food source for migrating plankton. Marine Biology., 116, 689–702.

    Article  Google Scholar 

  • Leps, J., & Smilauer, P. S. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Li, W. K. W., & Wood, A. M. (1988). Vertical distribution of North Atlantic ultraphytoplankton: analysis by flow cytometry and epifluorescence microscopy. Deep-Sea Research I., 35, 1615–1638.

    Article  Google Scholar 

  • Li, W. K. W., Rao, D. V. S., Harrison, W. G., Smith, J. C., Cullen, J. J., Irwin, B., & Platt, T. (1983). Autotrophic picoplankton in the tropical ocean. Science New Series, 219, 292–295.

    CAS  Google Scholar 

  • Madhu, N. V., Jyothibabu, R., Balachandran, K. K., Honey, U. K., Martin, G. D., Vijay, J. G., Shiyas, C. A., Gupta, G. V. M., & Achuthankutty, C. T. (2007). Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (Cochin Backwaters – India). Estuarine Coastal and Shelf Science., 73, 54–64.

    Article  Google Scholar 

  • Madhupratap, M. (1987). Status and strategy of zooplankton of tropical Indian estuaries: a review. Bulletin of the Plankton Society of Japan, 34, 65–81.

    Google Scholar 

  • Mann, E. L., Ahlgren, N., Moffett, J. W., & Chisholm, S. W. (2002). Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnology and Oceanography, 47, 976–988.

    Article  CAS  Google Scholar 

  • Mclusky, D. S. (1993). Marine and estuarine gradients – an overview. Netherlands Journal of Aquatic Ecology, 27, 489–493.

    Article  Google Scholar 

  • Mitbavkar, S., & Anil, A. C. (2011). Tiniest primary producers in the marine environment: an appraisal from the context of waters around India. Current Science, 100, 986–988.

    Google Scholar 

  • Mitbavkar, S., Rajaneesh, K., Anil, A., & Sundar, D. (2012). Picophytoplankton community in a tropical estuary: detection of Prochlorococcus-like populations. Estuarine Coastal and Shelf Science, 107, 159–164.

    Article  Google Scholar 

  • Naik, R. K., Anil, A. C., Narale, D. D., Chitari, R. R., & Kulkarni, V. V. (2011). Primary description of surface waters phytoplankton pigment patterns in the Bay of Bengal. Journal of Sea Research, 65, 435–441.

    Article  Google Scholar 

  • Partensky, F., Blanchot, J., Lantoine, F., Neveux, J., & Marie, D. (1996). Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep-Sea Research I, 43, 1191–1213.

    Article  CAS  Google Scholar 

  • Partensky, F., Hess, W., & Vaulot, D. (1999). Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology, 63, 106–127.

    CAS  Google Scholar 

  • Philips, E. J., Badylak, S., & Lynch, T. C. (1999). Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnology and Oceanography, 44, 1166–1175.

    Article  Google Scholar 

  • Pick, F. R., & Agbeti, D. M. (1991). The seasonal dynamic and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Internationale Revue der gesamten Hydrobiologie, 76, 565–580.

    Article  Google Scholar 

  • Pomeroy, L. R. (1974). The Ocean’s Food Web, A Changing Paradigm. BioScience., 24, 499–504.

    Article  Google Scholar 

  • Qasim, S. Z. (2003). Cochin backwaters and Vembanad. In S. Z. Qasim (Ed.), Indian estuaries (pp. 305–382). Mumbai: Allied Publishers Pvt. Ltd. ISBN 81-7764-369-X.

    Google Scholar 

  • Rajaneesh, K. M., & Mitbavkar, S. (2013). Factors controlling the temporal and spatial variations in Synechococcus abundance in a monsoonal estuary. Marine Environmental Research., 92, 133–143.

    Article  Google Scholar 

  • Saraladevi, K., Venugopal, P., Remani, K. N., Zacharias, D., & Unnithan, R. V. (1983). Nutrients in some estuaries of Kerala. Mahasagar – The Bulletin of National Institute of Oceanography Goa, 16, 161–173.

    Google Scholar 

  • Stockner, J., & Anita, N. (1986). Algal pico plankton from marine and freshwater ecosystems: a multidisciplinary perspective. Canadian Journal of Fisheries and Aquatic Sciences., 43, 2472–2502.

    Article  Google Scholar 

  • Stomp, M., Huisman, J., Voros, L., Pick, F. R., Laamanen, M., Haverkamp, T., & Stal, L. J. (2007). Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecology Letters, 10, 290–298.

    Article  Google Scholar 

  • Tan, Y., Huang, L., Chen, Q., & Huang, X. (2004). Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River estuary, China. Continental Shelf Research, 24, 1949–1968.

    Article  Google Scholar 

  • UNESCO. (1994). Protocols for the Joint Global Ocean Flux Study (JGOFS). Core measurements, IOC manuals and guides 29 (p. 170). Paris: UNESCO.

    Google Scholar 

  • Vaulot, D., Lebot, N., Marie, D., & Fukai, E. (1996). Effect of phosphorous on the Synechococcus cell cycle in surface Mediteranean waters during summer. Applied and Environmental Microbiology, 62, 2527–2533.

    CAS  Google Scholar 

  • Veldhuis, M. J. W., Kraay, G. W., & Gieskes, W. W. C. (1993). Growth and fluorescence characteristics of ultra-plankton on a north-south transect in the eastern North Atlantic. Deep-Sea Research II, 40, 609–626.

    Article  Google Scholar 

  • Vijith, V., Sundar, D., & Shetye, S. R. (2009). Time-dependence of salinity in monsoonal estuaries. Estuarine Coastal and Shelf Science, 85, 601–608.

    Article  CAS  Google Scholar 

  • Voros, L., Callieri, C., Balogh, K. V., & Bertoni, R. (1998). Freshwater picocyanobacteria along a tropical gradient and light quality range. Hydrobiologia, 369/370, 117–125.

    Article  CAS  Google Scholar 

  • Wang, K., Wommack, K. E., & Chen, F. (2011). Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Applied. Environmental. Microbiology., 77, 7459–7468.

    Article  CAS  Google Scholar 

  • Wellershaus, S. (1974). Seasonal changes in the zooplankton population in the Cochin backwater (a south Indian estuary). Hydrobiological Bulletin, 8, 213–223.

    Article  Google Scholar 

  • Wood, A. M., Horan, P. K., Muirhead, K., Phinney, D. A., Yentsch, C. M., & Waterbury, J. B. (1985). Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow cytometry. Limnol Oceanography, 30, 1303–1315.

    Article  CAS  Google Scholar 

  • Worden, A. Z., & Binder, B. J. (2003). Growth regulation of rRNA content of Prochlorococcus and Synechococcus (marine cyanobacteria) measured by whole-cell hybridization of rRNA targeted peptide nucleic acids. Journal of Phycology, 39, 527–534.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the director of CSIR-National Institute of Oceanography (NIO), India, for their facilities. The authors thank the scientist-in-charge of CSIR NIO, RC Kochi, for encouragement. ICMAM-PD, Chennai, provided financial support. This is NIO contribution 5853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jyothibabu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, A.P., Jyothibabu, R., Jagadeesan, L. et al. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India. Environ Monit Assess 188, 93 (2016). https://doi.org/10.1007/s10661-016-5096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5096-7

Keywords

Navigation