Skip to main content
Log in

Statistical analysis of the influence of major tributaries to the eco-chemical status of the Danube River

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We have assembled and assessed the statistical procedure which is capable to objectively explore influence of the Danube’s major tributaries (the Rivers Tisa, Sava, and Velika Morava) to its eco-chemical status. Procedure contains several tests for measurement of central tendencies: one-way analysis of variance (ANOVA), repeated measures ANOVA, and nonparametric Kruskal–Wallis and Mann–Whitney tests. Various nuisance factors, (outliers, departures from normality, seasonality, and heteroscedasticity) which are present in large data bases, affect the objectivity of central tendency tests; therefore, it was important not only to estimate their robustness, but also to apply proper procedures for detection of the nuisance factors (Grubbs’, generalized ESD—extreme Studentized deviate, Kolmogorov–Smirnov, Shapiro–Wilk, turning point, Wald–Wolfowitz runs, Kendall rank, and Levene’s tests) and to mitigate their influence (outlier exclusion, Box–Cox, and logarithmic transformations). The analysis of selected eco-chemical parameters: biological oxygen demand-5, chemical oxygen demand, UV extinction at 254 nm, dissolved oxygen, oxygen saturation, total dissolved solids, electrical conductivity, suspended matter, total phosphorus, phosphates, nitrates, ammonia, pH, total alkalinity, m-2p alkalinity, CO2, and temperature, was performed for 15 years period. The Tisa was the most polluted tributary, but its pollution load was not substantial enough to exceed the Danube self-purification potential. The City of Belgrade was also identified as serious pollution source. Assessment of assembled statistical procedure, which was based on the real environmental data, indicates that proposed tests are sufficiently robust to the observed level of nuisance factors with the exception of pronounced seasonality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akritas, M. G., & Papadatos, N. (2004). Heteroscedastic one-way ANOVA and lack-of-fit tests. Journal of the American Statistical Association, 99, 368–382. doi:10.1198/016214504000000412.

    Article  Google Scholar 

  • Alexander, R. A., & Govern, D. M. (1994). A new and simpler approximation for ANOVA under variance heterogeneity. Journal of Educational and Behavioral Statistics, 19, 91–101. doi:10.3102/10769986019002091.

    Article  Google Scholar 

  • Antonijević, M., et al. (2014). Actual contamination of the Danube and Sava rivers at Belgrade (2013). Journal of the Serbian Chemical Society, 79, 1169–1184. doi:10.2298/JSC131105014A.

    Article  Google Scholar 

  • Bende-Michl, U., Verburg, K., & Cresswell, H. (2013). High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery. Environmental Monitoring and Assessment, 185, 9191–9219. doi:10.1007/s10661-013-3246-8.

    Article  CAS  Google Scholar 

  • Bennett, C. A. (1951). Application of tests for randomness. Industrial and Engineering Chemistry, 43, 2063–2067. doi:10.1021/ie50501a028.

    Article  CAS  Google Scholar 

  • Boslaugh, S., Watters, P. (2008). Statistics in a nutshell: A desktop quick reference (In a Nutshell (O'Reilly)). O'Reilly Media, Sebastopol. citeulike-article-id:7238898.

  • Bouraoui, F., & Grizzetti, B. (2011). Long term change of nutrient concentrations of rivers discharging in European seas. Science of the Total Environment, 409, 4899–4916. doi:10.1016/j.scitotenv.2011.08.015.

    Article  CAS  Google Scholar 

  • Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40, 318–335. doi:10.1093/biomet/40.3-4.318.

    Article  Google Scholar 

  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B: Methodological, 26, 211–252.

    Google Scholar 

  • Brown, M. B., & Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the American Statistical Association, 69, 364–367. doi:10.1080/01621459.1974.10482955.

    Article  Google Scholar 

  • Clinch, J. J., & Keselman, H. J. (1982). Parametric alternatives to the analysis of variance. Journal of Educational and Behavioral Statistics, 7, 207–214. doi:10.3102/10769986007003207.

    Article  Google Scholar 

  • Dragun, Z., Krasnići, N., Strižak, Ž., & Raspor, B. (2012). Lead concentration increase in the hepatic and gill soluble fractions of European chub (Squalius cephalus)—an indicator of increased Pb exposure from the river water. Environmental Science and Pollution Research, 19, 2088–2095. doi:10.1007/s11356-011-0706-y.

    Article  CAS  Google Scholar 

  • Fagerland, M. W., & Sandvik, L. (2009). The Wilcoxon–Mann–Whitney test under scrutiny. Statistics in Medicine, 28, 1487–1497. doi:10.1002/sim.3561.

    Article  Google Scholar 

  • Field, A. (2013). Discovering statistics using IBM SPSS statistics. SAGE Publications.

  • Games, P. A., & Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal n’s and/or variances: a Monte Carlo study. Journal of Educational and Behavioral Statistics, 1, 113–125.

    Article  Google Scholar 

  • Gazzaz, N. M., Yusoff, M. K., Ramli, M. F., Aris, A. Z., & Juahir, H. (2012). Characterization of spatial patterns in river water quality using chemometric pattern recognition techniques. Marine Pollution Bulletin, 64, 688–698. doi:10.1016/j.marpolbul.2012.01.032.

    Article  CAS  Google Scholar 

  • Girden, ER. (1992). ANOVA: repeated measures. vol no. 84. Sage Publications.

  • Hamchevici, C., & Udrea, I. (2013). Improving the sampling strategy of the Joint Danube Survey 3 (2013) by means of multivariate statistical techniques applied on selected physico-chemical and biological data. Environmental Monitoring and Assessment, 185, 9495–9507. doi:10.1007/s10661-013-3268-2.

    Article  CAS  Google Scholar 

  • Hamilton, P. B., Lavoie, I., & Poulin, M. (2011). Spatial, seasonal and inter-annual variability in environmental characteristics and phytoplankton standing stock of the temperate, lowland Rideau River, Ontario, Canada. River Research and Applications:n/a-n/a. doi:10.1002/rra.1543.

    Google Scholar 

  • Hinck, J. E., et al. (2007). Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries. Science of the Total Environment, 378, 376–402. doi:10.1016/j.scitotenv.2007.02.032.

    Article  CAS  Google Scholar 

  • ICPDR. (2005). Danube Basin analysis (WFD Roof Report 2004) International commission for the protection of the Danube River (ICPDR), Vienna.

  • Ilijević, K., Gržetić, I., Živadinović, I., & Popović, A. (2012). Long-term seasonal changes of the Danube River eco-chemical status in the region of Serbia. Environmental Monitoring and Assessment, 184, 2805–2828. doi:10.1007/s10661-011-2153-0.

    Article  Google Scholar 

  • Joseph, L., & Bhaumik, B. (1997). Improved estimation of the Box–Cox transform parameter and its application to hydrogeochemical data. Mathematical Geology, 29, 963–976. doi:10.1023/a:1022353401858.

    Article  CAS  Google Scholar 

  • Kanji, G. (2006). 100 statistical tests. London: Sage Publications Ltd.

    Google Scholar 

  • Kasuya, E. (2001). Mann–Whitney U test when variances are unequal. Animal Behaviour, 61, 1247–1249. doi:10.1006/anbe.2001.1691.

    Article  Google Scholar 

  • Khan, A., & Rayner, G. D. (2003). Robustness to non-normality of common tests for the many-sample location problem. Journal of Applied Mathematics and Decision Sciences, 7, 187–206. doi:10.1207/s15327612jamd0704_1.

    Article  Google Scholar 

  • Krishnamoorthy, K., Lu, F., & Mathew, T. (2007). A parametric bootstrap approach for ANOVA with unequal variances: fixed and random models. Computational Statistics and Data Analysis, 51, 5731–5742. doi:10.1016/j.csda.2006.09.039.

    Article  Google Scholar 

  • Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583–621.

    Article  Google Scholar 

  • Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption violations revisited: a quantitative review of alternatives to the one-way analysis of variance F test. Review of Educational Research, 66, 579–619. doi:10.3102/00346543066004579.

    Google Scholar 

  • Lloyd, C. E. M., Freer, J. E., Collins, A. L., Johnes, P. J., & Jones, J. I. (2014). Methods for detecting change in hydrochemical time series in response to targeted pollutant mitigation in river catchments. Journal of Hydrology, 514, 297–312. doi:10.1016/j.jhydrol.2014.04.036.

    Article  CAS  Google Scholar 

  • Malaeb, Z. (1997). A SAS code to correct for non-normality and non-constant variance in regression and ANOVA models using the Box–Cox method of power transformation. Environmental Monitoring and Assessment, 47, 255–273. doi:10.1023/a:1005798521296.

    Article  CAS  Google Scholar 

  • Manoj, K., & Padhy, P. K. (2014). Multivariate statistical techniques and water quality assessment: discourse and review on some analytical models. International Journal of Environmental Sciences, 5, 607–626.

    Google Scholar 

  • McDonald, J. (2009). Handbook of biological statistics. Baltimore: Sparky House Publishing.

    Google Scholar 

  • McGinnis, D. F., Bocaniov, S., Teodoru, C., Friedl, G., Lorke, A., & Wüest, A. (2006). Silica retention in the Iron Gate I reservoir on the Danube River: the role of side bays as nutrient sinks. River Research and Applications, 22, 441–456. doi:10.1002/rra.916.

    Article  Google Scholar 

  • Mihelcic, J. R., Zimmerman, J. B., Auer, M. T. (2010). Environmental engineering: Fundamentals, sustainability, design. Wiley.

  • Miljevic, N., Golobocanin, D., Ogrinc, N., & Bondzic, A. (2008). Distribution of stable isotopes in surface water along the Danube River in Serbia. Isotopes in Environmental and Health Studies, 44, 137–148. doi:10.1080/10256010802066141.

    Article  CAS  Google Scholar 

  • Miller, J., & Miller, J. (2005). Statistics and chemometrics for analytical chemistry. New Jersey: Pearson Prentice Hall.

    Google Scholar 

  • Navrátil, T., Norton, S., Fernandez, I., & Nelson, S. (2010). Twenty-year inter-annual trends and seasonal variations in precipitation and stream water chemistry at the Bear Brook Watershed in Maine, USA. Environmental Monitoring and Assessment, 171, 23–45. doi:10.1007/s10661-010-1527-z.

    Article  Google Scholar 

  • Olkin, I. (1960). Contributions to probability and statistics: essays in honor of Harold hotelling. Stanford University Press.

  • Osborne, J. (2010). Improving your data transformations: applying the Box-Cox transformation. Practical Assessment, Research & Evaluation, 15.

  • Paller, M. H., Jagoe, C. H., Bennett, H., Brant, H. A., & Bowers, J. A. (2004). Influence of methylmercury from tributary streams on mercury levels in Savannah River Asiatic clams. Science of the Total Environment, 325, 209–219. doi:10.1016/j.scitotenv.2003.11.008.

    Article  CAS  Google Scholar 

  • Pergal, M., Relić, D., Tešić, Ž., & Popović, A. (2014). Leaching of polycyclic aromatic hydrocarbons from power plant lignite ash—influence of parameters important for environmental pollution. Environmental Science and Pollution Research, 21, 3435–3442. doi:10.1007/s11356-013-2314-5.

    Article  CAS  Google Scholar 

  • Radović, T., Grujić, S., Petković, A., Dimkić, M., & Laušević, M. (2014). Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environmental Monitoring and Assessment, 187, 1–17. doi:10.1007/s10661-014-4092-z.

    Google Scholar 

  • Radu, V. M., Ionescu, P., Deak, G., Ivanov, A. A., & Diacu, E. (2014). Multivariate statistical analysis for quality assessment of aquatic ecosystem on the lower Danube. Journal of Environmental Protection and Ecology, 15, 412–424.

    CAS  Google Scholar 

  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. Journal of Applied Mathematics and Decision Sciences, 2, 21–33.

    Google Scholar 

  • Rehwoldt, R., Karimian-Teherani, D., & Altmann, H. (1975). Measurement and distribution of various heavy metals in the Danube River and Danube Canal aquatic communities in the vicinity of Vienna, Austria. Science of the Total Environment, 3, 341–348. doi:10.1016/0048-9697(75)90065-0.

    Article  CAS  Google Scholar 

  • Rice, S., & Church, M. (1998). Grain size along two gravel-bed rivers: statistical variation, spatial pattern and sedimentary links. Earth Surface Processes and Landforms, 23, 345–363. doi:10.1002/(sici)1096-9837(199804)23:4<345::aid-esp850>3.0.co;2-b.

    Article  Google Scholar 

  • Rogan, J. C., & Keselman, H. J. (1977). Is the ANOVA F-test robust to variance heterogeneity when sample sizes are equal?: an investigation via a coefficient of variation. American Educational Research Journal, 14, 493–498. doi:10.3102/00028312014004493.

    Article  Google Scholar 

  • Roig, N., Nadal, M., Sierra, J., Ginebreda, A., Schuhmacher, M., & Domingo, J. L. (2011). Novel approach for assessing heavy metal pollution and ecotoxicological status of rivers by means of passive sampling methods. Environment International, 37, 671–677. doi:10.1016/j.envint.2011.01.007.

    Article  CAS  Google Scholar 

  • Rosner, B. (1983). Percentage points for a generalized ESD many-outlier procedure. Technometrics, 25, 165–172. doi:10.1080/00401706.1983.10487848.

    Article  Google Scholar 

  • Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to student’s t-test and the Mann–Whitney U test. Behavioral Ecology, 17, 688–690. doi:10.1093/beheco/ark016.

    Article  Google Scholar 

  • Sakan, S., Gržetić, I., & Đorđević, D. (2007). Distribution and fractionation of heavy metals in the Tisa (Tisza) River sediments. Environmental Science and Pollution Research International, 14, 229–236. doi:10.1065/espr2006.05.304.

    Article  CAS  Google Scholar 

  • Sakia, R. M. (1992). The Box-Cox transformation technique: a review. Journal of the Royal Statistical Society Series D (The Statistician), 41, 169–178.

    Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611. doi:10.1093/biomet/52.3-4.591.

    Article  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22, 464–475. doi:10.1016/j.envsoft.2006.02.001.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38, 3980–3992. doi:10.1016/j.watres.2004.06.011.

    Article  CAS  Google Scholar 

  • Skidmore, R. E., Maberly, S. C., & Whitton, B. A. (1998). Patterns of spatial and temporal variation in phytoplankton chlorophyll a in the River Trent and its tributaries. Science of the Total Environment, 210–211, 357–365. doi:10.1016/s0048-9697(98)00023-0.

    Article  Google Scholar 

  • Sokal, R., & Rohlf, J. (2009). Introduction to biostatistics (2nd ed.). New York: Dover Publications.

    Google Scholar 

  • Subotić, S., Višnjić Jeftić, Ž., Spasić, S., Hegediš, A., Krpo-Ćetković, J., & Lenhardt, M. (2013). Distribution and accumulation of elements (As, Cu, Fe, Hg, Mn, and Zn) in tissues of fish species from different trophic levels in the Danube River at the confluence with the Sava River (Serbia). Environmental Science and Pollution Research, 20, 5309-5317. doi:10.1007/s11356-013-1522-3.

    Google Scholar 

  • Takao, A., Kawaguchi, Y., Minagawa, T., Kayaba, Y., & Morimoto, Y. (2008). The relationships between benthic macroinvertebrates and biotic and abiotic environmental characteristics downstream of the Yahagi Dam, Central Japan, and the State Change Caused by inflow from a Tributary. River Research and Applications, 24, 580–597. doi:10.1002/rra.1135.

    Article  Google Scholar 

  • Tan, W. Y., & Tabatabai, M. A. (1986). Some Monte Carlo studies on the comparison of several means under heteroscedasticity and robustness with respect to departure from normality. Biometrical Journal, 28, 801–814. doi:10.1002/bimj.4710280706.

    Article  Google Scholar 

  • Tiku, M. L. (1971). Power function of the F-test under non-normal situations. Journal of the American Statistical Association, 66, 913–916.

    Google Scholar 

  • van Dijk, G. M., van Liere, L., Admiraal, W., Bannink, B. A., & Cappon, J. J. (1994). Present state of the water quality of European rivers and implications for management. Science of the Total Environment, 145, 187–195. doi:10.1016/0048-9697(94)90309-3.

    Article  Google Scholar 

  • Vargha, A., & Delaney, H. D. (1998). The Kruskal-Wallis test and stochastic homogeneity. Journal of Educational and Behavioral Statistics, 23, 170–192. doi:10.3102/10769986023002170.

    Article  Google Scholar 

  • Volaufova, J. (2009). Heteroscedastic ANOVA: old < i > p</i > values, new views. Statistical Papers, 50, 943–962. doi:10.1007/s00362-009-0262-4.

    Article  Google Scholar 

  • Weerahandi, S. (1995). ANOVA under unequal error variances. Biometrics, 51, 589–599.

    Article  Google Scholar 

  • Welch, B. (1951). On the comparison of several mean values: an alternative approach. Biometrika, 330-336.

  • Zimmerman, D. W. (1995). Increasing the power of nonparametric tests by detecting and downweighting outliers. The Journal of Experimental Education, 64, 71–78. doi:10.1080/00220973.1995.9943796.

    Article  Google Scholar 

  • Zimmerman, D. W. (1998). Invalidation of parametric and nonparametric statistical tests by concurrent violation of two assumptions. The Journal of Experimental Education, 67, 55–68. doi:10.1080/00220979809598344.

    Article  Google Scholar 

  • Zimmerman, D. W. (2004). A note on preliminary tests of equality of variances. British Journal of Mathematical and Statistical Psychology, 57, 173–181. doi:10.1348/000711004849222.

    Article  Google Scholar 

  • Zimmerman, D. W. (2011). Inheritance of properties of normal and non-normal distributions after transformation of scores to ranks. Psicológica, 32, 65–85.

    Google Scholar 

  • Zimmerman, D. W., & Zumbo, B. D. (1993). Rank transformations and the power of the student t test and Welch t' test for non-normal populations with unequal variances. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 47, 523–539. doi:10.1037/h0078850.

    Article  Google Scholar 

  • Živadinović, I., Ilijević, K., Gržetić, I., & Popović, A. (2010). Long-term changes in the eco-chemical status of the Danube River in the region of Serbia. Journal of the Serbian Chemical Society, 75, 1125–1148. doi:10.2298/JSC091102075Z.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project grant 176006 provided by the Ministry of Education and Science of the Republic of Serbia for which we are most grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Ilijević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilijević, K., Obradović, M., Jevremović, V. et al. Statistical analysis of the influence of major tributaries to the eco-chemical status of the Danube River. Environ Monit Assess 187, 553 (2015). https://doi.org/10.1007/s10661-015-4740-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4740-y

Keywords

Navigation