Skip to main content
Log in

The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Silurian–Ordovician (S–O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3–Cl–Na–Mg–Ca, water is alkaline, and its Ca2+ content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S–O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100–400 mg/kg) and K-bentonites (F = 2,800–4,500 mg/kg) contributes to the formation of F-rich groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Apambire, W. B., Boyle, D. R., & Michel, F. A. (1997). Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environmental Geology, 33, 13–24.

    Article  CAS  Google Scholar 

  • Billings, R. J., Berkowitz, R. J., & Watson, G. (2004). Teeth. Pediatrics, 113, 1120–1127.

    Google Scholar 

  • Carillo-Rivera, J. J., Cardona, A., & Edmunds, W. M. (2002). Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosi basin, Mexico. Journal of Hydrology, 261, 24–47.

    Article  Google Scholar 

  • Chae, G., Yun, S., Mayer, B., Kim, K., Kim, S., Kwon, J., Kim, K., & Koh, Y. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385, 272–283.

    Article  CAS  Google Scholar 

  • European Union. (1998). Council Directive 98/83/EC on the quality of water intended for human consumption. Official Journal of the European Communities, 330, 32–54.

    Google Scholar 

  • Cronin, S. J., Neall, V. E., Lecointre, J. A., Hedley, M. J., & Loganathan, P. (2003). Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research, 121, 271–291.

    Article  CAS  Google Scholar 

  • Desbarats, A. (2009). On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba. Applied Geochemistry, 24, 915–927.

    Article  CAS  Google Scholar 

  • Earle, S., & Krogh, E. (2006). Elevated fluoride and boron levels in groundwater from the Nanaimo group, Vancouver Island, Canada. In Sea to Sky Geotechnique 2006: Proceedings of 59th Canadian Geotechnical Conference and 7th Joint CGS/IAH Groundwater Specialty Conference (pp. 1584–1591). Vancouver, BC, Canada. Vancouver: Canadian Geotechnical Society.

  • Edmunds, M., & Smedley, P. (2005). Fluoride in natural waters—occurrence, controls and health aspects. In O. Selnius, B. Alloway, J. A. Centeno, R. B. Finkleman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology—impacts of the natural environment on public health (pp. 301–329). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Gemici, Ü., & Tarcan, G. (2002). Distribution of boron in thermal waters of western Anatolia, Turkey, and examples of their environmental impacts. Environmental Geology, 43, 87–98.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Gonfiantini, R., & Pennisi, M. (2006). The behaviour of boron isotopes in natural waters and in water–rock interactions. Journal of Geochemical Exploration, 88, 114–117.

    Article  CAS  Google Scholar 

  • Guo, Q., Wang, Y., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. Journal of Geochemical Exploration, 93, 1–12.

    Article  CAS  Google Scholar 

  • Haamer, K., & Karro, E. (2006). High fluoride content of K-bentonite beds in Estonian Paleozoic carbonate rocks. Fluoride, 39, 132–137.

    CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. USGS Water Supply Paper 2254. Reston: USGS

  • Indermitte, E., Saava, A., & Kull, A. (2006). The survey of drinking water supply in Estonia from the point of view of public health. In Ü. Mander, C. A. Brebbia, & E. Tiezzi (Eds.), The sustainable city IV. Urban regeneration and sustainability (pp. 817–826). Boston: WIT Press.

    Chapter  Google Scholar 

  • Indermitte, E., Saava, A., Russak, S., & Kull, A. (2007). The contribution of drinking water fluoride to the risk of dental fluorosis in Estonia. In C. Brebbia (Ed.), Environmental health risk IV (pp. 161–170). Boston: WIT Press.

    Chapter  Google Scholar 

  • Joogivee kvaliteedi-ja kontrollinõuded ning analüüsimeetodid. (2001). (The quality and monitoring requirements for drinking water and methods of analysis). RTL 2001/100/1369 (in Estonian). Tallinn: Ministry of Justice.

  • Karro, E., Indermitte, E., Saava, A., Haamer, K., & Marandi, A. (2006). Fluoride occurrence in publicly supplied drinking water in Estonia. Environmental Geology, 50, 389–396.

    Article  CAS  Google Scholar 

  • Karro, E., Marandi, A., Vaikmäe, R., & Uppin, M. (2009). Chemical peculiarities of the Silurian–Ordovician and Cambrian–Vendian aquifer systems in Estonia: an overview of hydrochemical studies. Estonian Journal of Earth Sciences, 58, 342–352.

    Article  Google Scholar 

  • Kiipli, T., Kiipli, E., & Kallaste, T. (1997). Metabentonite composition related to sedimentary facies in the Lower Silurian of Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 46, 93–104.

    Google Scholar 

  • Kim, Y., Kim, J. Y., & Kim, K. (2011). Geochemical characteristics of fluoride in groundwater of Gimcheon, Korea: lithogenic and agricultural origins. Environmental Earth Sciences, 63, 1139–1148.

    Article  CAS  Google Scholar 

  • Mamatha, P., & Rao, S. M. (2010). Geochemistry of fluoride rich groundwater in Kolar and Tumkur districts of Karnataka. Environmental Earth Sciences, 61, 131–142.

    Article  CAS  Google Scholar 

  • Molina, L., Sánchez-Martos, F., Pulido-Bosch, A., & Vallejos, A. (2003). Origin of boron from a complex aquifer in southeast of Spain. Environmental Geology, 44, 301–307.

    Article  CAS  Google Scholar 

  • Msonda, K. W. M., Masamba, W. R. L., & Fabiano, E. (2007). A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi. Physics and Chemistry of the Earth, 32, 1178–1184.

    Article  Google Scholar 

  • Naseem, S., Rafique, T., Bashir, E., Bhanger, M. I., Laghari, A., & Usmani, T. H. (2010). Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere, 78, 1313–1321.

    Article  CAS  Google Scholar 

  • Nestor, H., & Einasto, R. (1997). Ordovician and Silurian carbonate sedimentation basin. In A. Raukas & A. Teedumäe (Eds.), Geology and mineral resources of Estonia (pp. 192–204). Tallinn: Estonian Academy Publishers.

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water-Resources Investigations Report 99–4259. Reston: USGS

  • Pennisi, M., Bianchini, G., Muti, A., Kloppmann, W., & Gonfiantini, R. (2006). Behaviour of boron and strontsium isotopes in groundwater-aquifer interactions in Cornia Plain (Tuscany, Italy). Applied Geochemistry, 21, 1169–1183.

    Article  CAS  Google Scholar 

  • Perens, R., & Vallner, L. (1997). Water-bearing formation. In A. Raukas & A. Teedumäe (Eds.), Geology and mineral resources of Estonia (pp. 137–145). Tallinn: Estonian Academy Publishers.

    Google Scholar 

  • Perens, R., Savva, V., Lelgus, M., & Parm, T. (2001). The hydrogeochemical atlas of Estonia (CD version). Tallinn: Geological Survey of Estonia.

    Google Scholar 

  • Price, C. J., Marr, M. C., Myeos, C. B., Seely, J. C., Heindel, J. J., & Schwetz, B. A. (1996). The developmental toxicity of boric acid in rabbits. Fundamental and Applied Toxicology, 34, 176–187.

    Article  CAS  Google Scholar 

  • Queste, A., Lacombe, M., Hellmeier, W., Hillermann, F., Bortulussi, B., Kaup, M., Ott, K., & Mathys, W. (2001). High concentrations of fluoride and boron in drinking water wells in the Muenster region—results of a preliminary investigation. International Journal of Hygiene and Environmental Health, 203, 221–224.

    Article  CAS  Google Scholar 

  • Rafique, T., Naseem, S., Bhanger, M. I., & Usmani, T. H. (2008). Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environmental Geology, 56, 317–326.

    Article  CAS  Google Scholar 

  • Raukas, A., & Teedumäe, A. (1997). Geology and mineral resources of Estonia. Tallinn: Academy Publishers.

    Google Scholar 

  • Reddy, D. V., Nagabhushanam, P., Sukhija, B. S., Reddy, A. G. S., & Smedley, P. L. (2010). Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalonga District, India. Chemical Geology, 269, 278–289.

    Article  CAS  Google Scholar 

  • Saava, A. (1998). Health hazards due to drinking water. Proceedings of the Latvian Academy of Sciences, 52, 162–167.

    Google Scholar 

  • Saxena, V. K., & Ahmed, S. (2003). Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, 43, 731–736.

    CAS  Google Scholar 

  • Sujatha, D. (2003). Fluoride levels in groundwater of the south-eastern part of Ranga Reddy district, Andhra Pradesh, India. Environmental Geology, 44, 587–591.

    Article  CAS  Google Scholar 

  • Voutsa, D., Dotsika, E., Kouras, A., Poutoukis, D., & Kouimtzis, T. (2009). Study on distribution and origin of boron in groundwater in the area of Chalkidiki, Northern Greece by employing chemical and isotopic tracers. Journal of Hazardous Materials, 172, 1264–1272.

    Article  CAS  Google Scholar 

  • Weinstein, P., & Cook, A. (2005). Volcanic emissions and health. In O. Selnius, B. Alloway, J. A. Centeno, R. B. Finkleman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology—impacts of the natural environment on public health (pp. 203–229). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • WHO. (2008). Guidelines for drinking-water quality (3rd ed.). Geneva: World Health Organization.

    Google Scholar 

Download references

Acknowledgments

This study has been carried out with the financial support of Estonian Science Foundation Grant no. 7403. The groundwater analyses were performed in the Tartu laboratory of Estonian Environmental Research Centre. The authors are grateful to the reviewers for their constructive comments and suggestions, which have helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marge Uppin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karro, E., Uppin, M. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia. Environ Monit Assess 185, 3735–3748 (2013). https://doi.org/10.1007/s10661-012-2824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2824-5

Keywords

Profiles

  1. Enn Karro