Skip to main content

Advertisement

Log in

A phytoremediation approach using Calamagrostis ligulata and Juncus imbricatus in Andean wetlands of Peru

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Emergent plant species growing in Andean natural wetlands have shown efficient phytoremediation capabilities in wetlands polluted by acid mine drainage. However, the types and amounts of heavy metals accumulated by native plant species are not well understood. In this study, we focused on determining heavy metal concentrations and bioaccumulation factors in Calamagrostis ligulata and Juncus imbricatus. Two acid wetlands located above 3,500 m a.s.l. in Ancash, Peru were assessed. Physico-chemical parameters and heavy metals concentrations in control and experimental plant samples were measured in dry and rainy seasons. Results indicated that C. ligulata and J. imbricatus aerial parts accumulated higher amounts of Fe, Zn, As and Al. Also, bioaccumulation factors revealed notable increases in As, Pb and Al, but less so in Cd, Fe and Zn. On the other hand, physico-chemical parameters of water quality (pH, temperature, dissolved oxygen, sulphides) between inflow and outflow of wetlands indicated significant differences in the presence of metals in comparison with their maximum permissible limits. Both emergent plant species showed an accumulation of heavy metals and thus the ability to recovery of water quality in wetland outflows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamus, P., Danielson, Th. & Gonyaw, A. (2001). Indicators for monitoring biological integrity of inland, freshwater wetlands. A survey of North American technical literature (1990–2000). Washington, DC: United States Environmental Protection Agency, Office of Wetlands Division.

  • Aguilera, A., Souza-Egipsy, V., Gómez, F., & Amils, R. (2007). Development and structure of eukaryotic biofilms in an extreme acidic environment, Rio Tinto (SW, Spain). Microbial Ecology, 53, 294–305. doi:10.1007/s00248-006-9092-2.

    Article  Google Scholar 

  • Ali-Zade, V., Alirzaveva, E., & Shirvani, T. (2010). Plant resistance to anthropogenic toxicants: Approaches to phytoremediation. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 173–192). New York: Springer.

    Chapter  Google Scholar 

  • Almeida, C. M. R., Mucha, A. P., & Vasconcelos, M. T. (2006). Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environmental Pollution, 142, 151–159. doi:10.1016/j.envpol.2005.09.002.

    Article  CAS  Google Scholar 

  • AOAC International. (2005). Official methods of analysis of AOAC International. 18th edn., AOAC International, Gaithersburg, MD, USA, Method 975.03: Metals in plants and pet foods.

  • APHA-AWWA-WPCF. (1992). Métodos normalizados para el análisis de aguas potables y residuales. 17ava edic. Madrid: Ediciones Díaz de Santos S.A.

  • Baker, B. J., & Banfield, J. F. (2003). Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44, 139–152. doi:10.1016/S0168-6496(03)00028-X.

    Article  CAS  Google Scholar 

  • Bobadilla, M., Palomino, E., Tapia, P., Alvítez, E., Aliaga, E., & Yupanqui, E. (2008). Diversidad de algas de drenaje ácido de mina y de roca en lagunas altoandinas de Ancash-Perú. Libro de Resúmenes del III Coloquio Internacional: Contaminación en la Selva y los Amazonía: Efectos de los metales sobre el medio ambiente, la salud y la sociedad. Institut de recherche pour le développment. La Paz, Bolivia.

  • Bond, P. L., Druschel, G. K., & Banfield, J. F. (2000). Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Applied and Environmental Microbiology, 66(1), 4962–4971.

    Article  CAS  Google Scholar 

  • Bowden, W.B., Glime, J.M., & Riis, T. (2006). Macrophytes and bryophytes. In Hauer, F.R., & Lamberti, G.A. (Eds.), Methods in stream ecology (pp. 381–414). 2da. ed. UK: Elsevier

  • Brinson, M. M., & Malvárez, A. I. (2002). Temperate freshwater wetlands: Types, status, and threats. Environmental Conservation, 29(2), 115–133. doi:10.1017/S0376892902000085.

    Article  Google Scholar 

  • Callahan, D. L., Baker, A. J. M., Kolev, S. D. & Wedd, A. G. (2006). Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem, 11, 2–12. doi:10.1007/s00775-005-0056-7.

    Google Scholar 

  • Cooper, D. J., Wolf, E. C., Colson, C., Vering, W., Granda, A., & Meyer, M. (2010). Alpine peatlands of the Andes, Cajamarca, Perú. Arctic, Antarctic, and Alpine Research, 42(1), 19–33. doi:10.1657/1938-4246-42.1.19.

    Article  Google Scholar 

  • Eggert, R.G. (1994). Mining and the environment: An introduction and overview. In Eggert, R.G. (Ed.), Mining and the environment. International perspectives on public policy (pp. 1–9). Washington: Resources for the Future.

  • EPA (2003). Methodology for deriving ambient water quality criteria for the protection of human health (2000). Technical support document volume 2: Development of national bioaccumulation factors. EPA-822-R-03-030

  • Flores, M., Alegría, J., & Granda, A. (2005). Diversidad florística asociada a las lagunas andinas Pomacocha y Habascocha, Junín. Perú Revista Peruana de Biología, 12(1), 125–134.

    Google Scholar 

  • Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35, 557–581. doi:10.1146/annurev.ecolsys.35.021103.105711.

    Article  Google Scholar 

  • Galbrand, C. C., Lemieux, I. G., Ghaly, A. E., Côte, R., & Verma, M. (2008). Water quality assessment of a constructed wetland treating landfill leachate and industrial park runoff. American Journal of Environmental Sciences, 4(2), 111–120.

    Article  CAS  Google Scholar 

  • Galbrand, C. C., Snow, A. M., Ghaly, A. E., & Côte, R. (2008). Establishment and evaluation of the vegetative community in a surface flow constructed wetland treating industrial park contaminants. American Journal of Agricultural and Biological Sciences, 3(1), 417–432.

    Article  Google Scholar 

  • Ginocchio, R., & Baker, A. J. M. (2004). Metallophytes in Latin America: A remarkable biological and genetic resource scarcely known and studied in the region. Revista Chilena de Historia Natural, 77, 185–194.

    Article  Google Scholar 

  • Ginocchio, R., Hepp, J., Bustamante, E., Silva, Y., De la Fuente, L. M., Francois, J., De la Harpe, J. P., Urrestarazu, P., Anic, V., & Montenegro, G. (2008). Importance of water quality on plant abundance and diversity in high-alpine meadows of the Yerba Loca Natural Sanctuary at the Andes of north-central Chile. Revista Chilena de Historia Natural, 81, 469–488.

    Article  Google Scholar 

  • Goulet, R. R., Lalonde, J. D., Munger, C., Dupuis, S., Dumont-Frenette, G., Prémont, S., & Campbell, P. G. (2005). Phytoremediation of effluents from aluminum smelters: A study of Al retention in mesocosms containing aquatic plants. Water Research, 39, 2291–2300. doi:10.1016/j.watres.2005.04.029.

    Article  CAS  Google Scholar 

  • Hao, Ch, Zhang, H., Hass, R., Bai, Z., & Zhang, B. (2007). A novel community of acidophiles in an acid mine drainage sediment. World Journal of Microbiology and Biotechnology, 23, 15–21. doi:10.1007/s11274-006-9188-3.

    Article  Google Scholar 

  • Henriques, F. S., & Fernandes, J. S. (1991). Metal uptake and distribution in rush (Juncus conglomeratus L.) plants growing in pyrites mine tailings at Lousal, Portugal. Science of the Total Environment, 102, 253–60. doi:10.1016/0048-9697(91)90319-A.

    Article  CAS  Google Scholar 

  • Howe, P. (1998). Environmental aspects of aluminium exposure. In Imray, P., Moore, R.M., Callan, P.N., & Lock, W. (Eds.), Aluminium (19–34). Metal Series N° 1. 2nd edn. Brisbane: National Environment Health Forum.

  • Jackson, L. J. (1998). Paradigms of metal accumulation in rooted aquatic vascular plants. Science of the Total Environment, 219, 223–231. doi:10.1016/S0048-9697(98)00231-9.

    Article  CAS  Google Scholar 

  • Jadia, Ch. D., & Fulekar, M. H. (2009). Phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology, 8(6), 921–928.

    CAS  Google Scholar 

  • Jedynak, L., Kowalska, J., Harasimowicz, J., & Golimowski, J. (2009). Speciation analysis of arsenic in terrestrial plants from arsenic contaminated area. Science of the Total Environment, 407, 945–952. doi:10.1016/j.scitotenv.2008.09.027.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: A review. Science of the Total Environment, 338, 3–14. doi:10.1016/j.scitotenv.2004.09.002.

    Article  CAS  Google Scholar 

  • Kamal, M., Ghaly, A., Mahmoud, N., & Côté, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039. doi:10.1016/S0160-4120(03)00091-6.

    Article  CAS  Google Scholar 

  • Kanti, D. B., Roy, A., Singh, S., & Bhattacharya, J. (2009). Eukaryotes in acidic mine drainage environments: Potential applications in bioremediation. Reviews in Environmental Science and Biotechnology, 8, 257–274. doi:10.1007/s11157-009-9161-3.

    Article  Google Scholar 

  • Kothe, E., Bergmann, H., & Buchel, G. (2005). Molecular mechanisms in bio-geo-interactions: From a case study to general mechanisms. Chemie der Erde Geochemistry, S1, 7–27. doi:10.1016/j.chemer.2005.06.005.

    Article  Google Scholar 

  • Lehmann, C., & Rebele, F. (2004). Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: A pot experiment. International Journal of Phytoremediation, 6(2), 169–183. doi:10.1080/16226510490454849.

    Article  CAS  Google Scholar 

  • Malmqvist, B., & Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation, 29(2), 134–153. doi:10.1017/S0376892902000097.

    Article  Google Scholar 

  • MEM. (2008). Atlas minero 2008. Ministerio de Energía y Minas, Instituto Geológico, Minero y Metalúrgico y Agence Canadienne Développment International. Lima.

  • Meyer, C. K., Whiles, M. R., & Baer, S. G. (2010). Plant community recovery following restoration in temporally variable riparian wetlands. Restoration Ecology, 18(1), 52–64. doi:10.1111/j.1526-100X.2008.00451.x.

    Article  Google Scholar 

  • Milton, S. J. (2001). Estadística para biología y ciencias de la salud (3ra ed.). Madrid: Mc Graw-Hill/Interamericana de España, S.A.U.

    Google Scholar 

  • Moreau, S., Bosseno, R., Fa Gu, X., & Baret, F. (2003). Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sensing of Environment, 85, 516–529. doi:10.1016/S0034-4257(03)00053-1.

    Article  Google Scholar 

  • Morse, J., Megonigal, P., & Walbridge, M. (2004). Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponni River, Virginia, USA. Biogeochemistry, 69(2), 175–206. doi:10.1023/B:BIOG.0000031077.28527.a2.

    Article  CAS  Google Scholar 

  • Mostacero, J., Mejía, F., & Gamarra, O. (2002). Taxonomía de las fanerógamas útiles del Perú. Trujillo: Normas Legales. SAC.

    Google Scholar 

  • Mostacero, J., Mejía, F., & Peláez, F. (1996). Fitogeografía del norte del Perú. Lima: Forma e Imagen.

    Google Scholar 

  • Nuñez, B. A., & Castañeda, I. H. (1999). Environmental management in a heterogeneous mining industry: The case of Perú. In A. Warhust (Ed.), Mining and the environment: Case studies from the Americas (pp. 137–180). Ottawa: International Development Research Centre.

    Google Scholar 

  • Olguín, E. J., & Sánchez-Galván, G. (2010). Aquatic phytoremediation: Novel insights in tropical and subtropical regions. Pure and Applied Chemistry, 82(1), 27–38. doi:10.1351/PAC-CON-09-02-13.

    Article  Google Scholar 

  • Palomino, E., Mostacero, J., Mejía, F., Bobadilla, M, Leyva, M., & Polo, R. (2008). Biorremediación de drenajes ácidos con humedales altoandinos. Ancash–Perú. Memorias del Congreso Internacional Gestión Sostenible del Agua: Reutilización, Tratamiento y Evaluación de la Calidad. Medellín.

  • Palomino, E., Paredes, M., & Villanueva, A. (2005). Biorremediacion de drenajes ácidos de mina (DAM) mediante sistema de humedales. Lima: Memorias del IV Congreso Internacional de Medio Ambiente en Minería y Metalurgia. Memorias del Congreso.

    Google Scholar 

  • Pauwels, M., Willems, G., Roosens, N., Frérot, H., & Saumitou-Laprade, P. (2008). Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal-polluted sites: Implication for phytoremediation. Molecular Ecology, 17, 108–119. doi:10.1111/j.1365-294X.2007.03486.x.

    Article  CAS  Google Scholar 

  • Poore, M. E. D. (1955). The use of phytosociological methods in ecological investigations: I. The Braun–Blanquet system. Journal of Ecology, 43(1), 226–244.

    Article  Google Scholar 

  • RAMSAR. (2002). High Andean wetlands as strategic ecosystems. Resolution VIII.39. Valencia.

  • Ronco, A., Díaz, M. C., & Pica, Y. (2004). Monitoreo ambiental. In G. Castillo (Ed.), Ensayos toxicológicos y métodos de evaluación de calidad de aguas (pp. 23–30). México: IMTA.

    Google Scholar 

  • Roque, J., & Ramírez, E. (2008). Flora vascular y vegetación de la laguna de Parinacochas y alrededores (Ayacucho, Perú). Revista Peruana de Biología, 15(1), 61–72.

    Google Scholar 

  • Salaverry, J. (2006). Macroecología de los Andes peruanos. Situación actual y dinámica de cambio en los últimos 20 000 años. Lima: Hozlo.

  • Samecka-Cymerman, A., & Kempers, A. J. (1996). Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Ecotoxicology and Environmental Safety, 35, 242–247. doi:10.1006/eesa.1996.0106.

    Article  CAS  Google Scholar 

  • Sandin, L., & Solimini, A. G. (2009). Freshwater ecosystem structure–function relationships: From theory to application. Freshwater Biology, 54, 2017–2024. doi:10.1111/j.1365-2427.2009.02313.x.

    Article  Google Scholar 

  • Schmidt, A. Ch., Mattusch, J., Reisser, W., & Wennrich, R. (2004). Uptake and accumulation behaviour of angiosperms irrigated with solutions of different arsenic species. Chemosphere, 56, 305–313. doi:10.1016/j.chemosphere.2004.02.031.

    Article  CAS  Google Scholar 

  • Sheoran, A. S. (2006). Performance of three aquatic plant species in bench-scale acid mine drainage wetland test cells. Mine Water and the Environment, 25, 23–36. doi:10.1007/s10230-006-0105-7.

    Article  CAS  Google Scholar 

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage. Minerals Engineering, 19, 105–116. doi:10.1016/j.mineng.2005.08.006.

    Article  CAS  Google Scholar 

  • Sheoran, V., Sheoran, A. & Poonia, P. (2009). Phytomining: A review. Minerals Engineering 22: 1007–1019. doi:10.1016/j.mineng.2009.04.001.

    Google Scholar 

  • Shrestha, B. B. (2003). Metal toxicity in plants: How to metallophytes manage to grow? Himalayan Journal of Science, 1(1), 51–54.

    Google Scholar 

  • Squeo, F., Warner, B., Aravena, R., & Espinoza, D. (2006). Bofedales: High altitude peatlands of the central Andes. Revista Chilena de Historia Natural, 79(2), 245–255.

    Article  Google Scholar 

  • Storey, K. B., & Storey, J. M. (2005). Biochemical adaptation to extreme environments. In W. Walz (Ed.), Integrative physiology in the proteomics and post-genomics age (pp. 169–200). New Jersey: Humana Press Inc.

    Chapter  Google Scholar 

  • Suchkova, N., Darakas, E., & Ganoulis, J. (2010). Phytoremediation as a prospective method for rehabilitation of areas contaminated by long-term sewage sludge storage: A Ukrainian–Greek case study. Ecological Engineering, 36, 373–378. doi:10.1016/j.ecoleng.2009.11.002.

    Article  Google Scholar 

  • Tupayachi, A. (2005). Flora de la cordillera del Vilcanota. ARNALDOA, 12(1–2), 126–144.

    Google Scholar 

  • Ulrich, P. (1970). Metallogenic provinces in South America. International Journal of Earth Sciences, 59(3), 834–897.

    Google Scholar 

  • USEPA. (1994). Method 200.7: Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry, revision 4.4, EPA Cincinnati, Ohio 45268.

  • USEPA. (1996). Method 1638: Determination of Trace elements in ambient waters by inductively coupled plasma-mass spectrometry. U.S. Environmental Protection Agency's Office of Water, Engineering and Analysis Division. Washington, D.C. 20460.

  • USEPA. (2002). Methods for evaluating wetland condition: Using vegetation to assess environmental conditions in wetlands. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-020.

  • USEPA. (2009). National recommended water quality criteria. Office of Water and Office Science and Technology (4304T).

  • Walker, D. J., & Hurl, S. (2002). The reduction of heavy metals in a stormwater wetland. Ecological Engineering, 18(2002), 407–414. doi:10.1016/S0925-8574(01)00101-X.

    Article  Google Scholar 

  • Warner, R. (1971). Distribution of biota in a stream polluted by acid mine-drainage. The Ohio Journal of Science, 71(4), 202–215.

    Google Scholar 

  • WHO. (2008). Guidelines for drinking-water quality. 3rd edn., vol.1. Recommendations incorporating 1st and 2nd addenda. Geneva.

  • World Bank. (2006). Republic of Peru. Wealth and sustainability: The environmental and social dimensions of the mining sector in Peru. Washington DC: The World Bank.

  • Yang, X., Feng, Y., He, Z., & Stoffella, P. J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 339–353. doi:10.1016/j.jtemb.2005.02.007.

    Article  CAS  Google Scholar 

  • Zabludowska, E., Kowalska, J., Jedynak, L., Wojas, S., Sklodowska, A., & Antosiewicz, D. M. (2009). Search for a plant for phytoremediation—What can we learn from field and hydroponic studies? Chemosphere, 77, 301–307. doi:10.1016/j.chemosphere.2009.07.064.

    Article  CAS  Google Scholar 

  • Zenk, M. H. (1996). Heavy metal detoxification in higher plants—A review. Gene, 179, 21–30. doi:10.1016/S0378-1119(96)00422-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fund of the Released Financial Resources for Peruvian Professorship Homologation Processes approved through university research pro-vice-chancellor Resolution N° 034-2008-UNASAM. In addition, this study was partially supported by Science and Technology Programme, Presidency of the Council of Ministers of Peru. We appreciate the critical revision of anonymous reviewers to improve in the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobadilla Miguel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miguel, B., Edell, A., Edson, Y. et al. A phytoremediation approach using Calamagrostis ligulata and Juncus imbricatus in Andean wetlands of Peru. Environ Monit Assess 185, 323–334 (2013). https://doi.org/10.1007/s10661-012-2552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2552-x

Keywords

Navigation