Skip to main content
Log in

Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980–2004. The parameters considered are As, Cu Fe, pH, EC, SO\(_{4}^{-2}\), Cl − 1, and HCO\(_{3}^{-1}\), from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au–Cu–As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H + -metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegre, C. J., & Michard, G. (1973). Introduction a la Geochimie (p. 220). Paris: Presses Universitaires de France.

    Google Scholar 

  • Atkinson, W. W., Souviron, A., Vehrs, T. I., & Faunes, A. (1996). Gelogy and mineral zoning of the Los Pelambres porphyry copper deposit, Chile. In F. Camus, R. M. Sillitoe & R. Petersen (Eds.), Society of Economic Geologists Special Publication N o 5 (pp. 131–155). Littleton: SEG.

    Google Scholar 

  • Brookins, D. G (1988). Eh-pH Diagrams for Geochemistry. New York: Springer.

    Google Scholar 

  • COCHILCO (2009). Mercado de productos mineros: Estadísticas históricas. Santiago: Comisión Chilena del Cobre. http://www.cochilco.cl/productos/base_datos.asp. Accessed 1 March 2010.

  • CONAMA (1999). Diagnóstico y Propuesta de Manejo de Tranques de Relaves y Depósitos de Ripios, Región de Coquimbo. Informe final (p. 200). Santiago: Comisión Nacional del Medio Ambiente.

    Google Scholar 

  • DGA (2004). Diagnóstico y Clasificación de los Cursos y Cuerpos de Agua Según Objetivos de Calidad. Cuenca del Río Choapa (p. 131). Santiago: Dirección General de Aguas.

    Google Scholar 

  • Dorsch, K., Bender, S., & Wrobel, M. (2001). Hydrogeochemistry of the Choapa-Illapel river system, Chile. In K. Seiller & S. Wohnlich (Eds.), New Approaches Characterizing Groundwater Flow (pp. 1165–1167). Lisse: Balkema.

    Google Scholar 

  • Dundar, M. S., & Altundag, H. (2007). Investigation of heavy metal contaminations in the lower Sakarya river water and sediments. Environmental Monitoring and Assessment, 128(1–3), 177–181. doi:10.1007/s10661-006-9303-9.

    Article  CAS  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., & Greenberg, A. E. (1995). Standard Methods for the Examination of Water and Wastewater (19th ed.). Washington D.C: Office of the American Public Health Association.

    Google Scholar 

  • Edraki, M., Golding, S. D., Baublys, K. A., & Lawrence, M. G. (2005). Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia. Applied Geochemistry, 20(4), 789–805. doi:10.1016/j.apgeochem.2004.11.004.

    Article  CAS  Google Scholar 

  • Favier, V., Falvey, M., Rabatel, A., Pradeiro, E., & López, D. (2009). Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile’s Norte-Chico region (26°–32°S). Water Resources Research, 45(W02424). doi:10.1029/2008WR006802.

  • Galleguillos, G., Oyarzún, J., Maturana, H., & Oyarzún, R. (2008). Retención de arsénico en embalses: El caso del río Elqui, Chile. Ingeniería Hidráulica en México, 23(3), 29–36.

    Google Scholar 

  • Gammons, C. H., Zinder, D. M., Poulson, S. R., & Petritz, K. (2009). Geochemistry and stable isotopes of the flooded underground mine workings of Butte, Montana. Economic Geology, 104(8), 1213–1234. doi:10.2113/gsecongeo.104.8.1213.

    Article  CAS  Google Scholar 

  • Guevara, S., Oyarzún, J., & Maturana, H. (2006). Geoquímica de las aguas del rio Elqui y de sus tributarios en el período 1975-1995: Factores naturales y efecto de las explotaciones mineras en sus contenidos de Fe, Cu y As. Chilean Journal of Agricultural Research, 66(1), 57–69.

    Google Scholar 

  • INE (2005). Estadísticas demográficas y vitales. Santiago: Instituto Nacional de Estadísticas. http://www.ine.cl/canales/chile_estadistico/demografia_y_vitales/demografia/demografia.php. Accessed 8 March 2010.

  • INE (2007). VII Censo Agropecuario y Forestal. Santiago: Instituto Nacional de Estadísticas. http://www.ine.cl/canales/chile_estadistico/censos_agropecuarios/censo_agropecuario_07_comunas.php. Accessed 8 March 2010.

  • INN (1987). Norma Chilena Oficial, Requisitos de Calidad de Agua para Diferentes Usos (NCh133.Of78). Santiago: Instituto Nacional de Normalización.

    Google Scholar 

  • Jannas, R., Bowers, T. S., Petersen, U., & Beane, R. E. (1999). High sulfidation deposit types in the El Indio district, Chile. In B. J. Skinner (Ed.), Society of Economic Geologists Special Publication N o 7 (pp. 219–266). Littletown: SEG.

    Google Scholar 

  • Lepeltier, C. (1969). A simplified statistical treatment of geochemical data by graphical representation. Economic Geology, 64(5), 538–550. doi:10.2113/gsecongeo.64.5.538.

    Article  CAS  Google Scholar 

  • Levinson, A. A. (1974). Introduction to exploration geochemistry. Illinois: Applied Publishing Ltd.

    Google Scholar 

  • Oyarzun, R., Guevara, S., Oyarún, J., Lillo, J., Maturana, H., & Higueras, P. (2006). The As-contaminated Elqui river basin: A long lasting perspective (1975–1995) covering the initiation and development of Au-Cu-As mining in the high Andes of northern Chile. Environmental Geochemistry and Health, 28(5), 431–443. doi:10.1007/s10653-006-9045-1.

    Article  CAS  Google Scholar 

  • Oyarzun, R., Oyarzún, J., Lillo, J., Maturana, H., & Higueras, P. (2007). Mineral deposits and Cu-Zn-As dispersion-contamination in stream sediments from the semiarid Coquimbo Region, Chile. Environmental Geology, 53(2), 283–294. doi:10.1007/s00254-007-0643-8.

    Article  CAS  Google Scholar 

  • Oyarzún, J., Maturana, H., Paulo, A., & Pasieczna, A. (2003). Heavy metals in stream sediments from the Coquimbo region (Chile): Effects of sustained mining and natural processes in a semi-arid andean basin. Mine. Water and the Environment, 22(3), 155–161.

    Article  Google Scholar 

  • Oyarzún, J., Maturana, H., & Oyarzún, R. (2009). Acidity neutralization potential of silicate minerals: a neglected factor in acid drainage assessment of sulphide metallic deposits. In I. Aracena, C. Holmgren & R. Kuyvenhoven (Eds.), Proceedings GEOMIN: Primer Seminario Internacional de Geología para la Industria Minera (pp. 217–225). Santiago: GECAMIN.

    Google Scholar 

  • Oyarzún, J., & Oyarzún, R. (2010). Sustainable development threats, inter-sector conflicts and environmental policy requirements in the arid, mining rich, northern Chile territory. Sustainable Development. doi:10.1002/sd.441.

    Google Scholar 

  • Rivano, S., & Sepúlveda, P. (1991). Hoja Illapel, Region de Coquimbo. Santiago: Servicio Nacional de Geología y Minería, p. 132 (pp. 132 and 1:250.000 geological map).

    Google Scholar 

  • Rojas, J. C., & Vandecastelde, C. (2007). Influence of mining activities in the North of Potosi, Bolivia, on the water quality of the Chayanta river, and its consequences. Environmental Monitoring and Assessment, 132(1–3), 321–330. doi:10.1007/s10661-006-9536-7.

    Article  CAS  Google Scholar 

  • Savage, K. S., Ashley, R. P., & Bird, D. K. (2009). Geochemical evolution of a high arsenic, alkaline pit lake in the Mother LODE gold district, California. Economic Geology, 104(8), 1171–1211. doi:10.2113/gsecongeo.104.8.1171.

    Article  CAS  Google Scholar 

  • SERNAGEOMIN (1990). Catastro y Evaluación Técnico Ambiental de los Tranque de Relaves y Depósitos de Ripios, IV Región de Coquimbo. Santiago: Servicio Nacional de Geología y Minería.

    Google Scholar 

  • VALE (2009). Estudio de impacto ambiental, resumen ejecutivo. Compañía Minera Latinoamericana (pp. 30).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Oyarzún.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parra, A., Oyarzún, J., Maturana, H. et al. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process. Environ Monit Assess 181, 69–82 (2011). https://doi.org/10.1007/s10661-010-1814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1814-8

Keywords

Navigation