Skip to main content

Advertisement

Log in

Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 03 September 2010

Abstract

A detailed investigation was conducted to evaluate heavy metal sources and their spatial distribution in agricultural fields in the south of Tehran using statistics, geostatistics, and a geographic information system. The content of Cd, Cu, Co, Pb, Zn, Cr, and Ni were determined in 106 samples. The results showed that the primary inputs of Cr, Co, and Ni were due to pedogenic factors, while the inputs of Zn, Pb, and Cu were due to anthropogenic sources. Cd was associated with distinct sources, such as agricultural and industrial pollution. Ordinary kriging was carried out to map the spatial patters of heavy metals, and disjunctive kriging was used to quantify the probability of heavy metal concentrations higher than their recommended threshold values. The results show that Cd, Cu, Ni, and Zn exhibit pollution risk in the study area. The sources of the high pollution levels evaluated were related to the use of urban and industrial wastewater and agricultural practices. These results are useful for the development of proper management strategies for remediation practices in the polluted area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. New York: Springer.

    Google Scholar 

  • Alavi Naeini, M. R., Mozafari, A., & Najjaran, M. (2005). Geochemical and heavy mineral exploration in Tehran. Scale:1:100000. Ministry of Industries and Mines Geological survey of Iran.

  • Alloway, B. J. (1990). Heavy metals in soils. London: Blackie.

    Google Scholar 

  • Alloway, B. J., & Ayres, D. C. (1993). Chemical principles of environmental pollution. London: Blackie.

    Google Scholar 

  • Alloway, B. J., & Jackson, A. (1991). The behavior of heavy metals in sewage sludge-amended soil. Science of the Total Environment, 100, 151–176.

    Article  CAS  Google Scholar 

  • Aucejo, A., Ferrer, J., Gabaldón, C., Marzal, P., & Seco, A. (1997). Diagnosis of boron, fluorine, lead, nickel and zinc toxicity in citrus plantations in Villareal, Spain. Water Air Soil Pollution, 94, 349–360.

    CAS  Google Scholar 

  • Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems (p. 333). Oxford: Oxford University Press.

    Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of American Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Chen, T., Liu, X. M., Zhu, M. Z., Zhao, K. L., Wu, J. J., Xu, J. M., et al. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban–rural transitional area of Hangzhou, China. Environmental Pollution, 151, 67–78.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to micro-organisms and microbial processes in agricultural soils. Soil Biology and Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Applied geostatistics series. New York: Oxford University Press.

    Google Scholar 

  • Goovaerts, P. (1999). Geostatistics in soil science: State-of-the-art and perspectives. Geoderma, 89, 1–45.

    Article  Google Scholar 

  • Hernandez-Stefanoni, J. L., & Ponce-Hernandez, R. (2006). Mapping the spatial variability of plant diversity in a tropical forest: Comparison of spatial interpolation methods. Environmental Monitoring and Assessment, 117, 307–334.

    Article  Google Scholar 

  • Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., Yan, C. Y., et al. (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere, 67, 2148–2155.

    Article  CAS  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (pp. 39–52). New York:Oxford University Press.

    Google Scholar 

  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of Chemical, Metallurgical and Mining Society of South Africa, 52(6), 119–139.

    Google Scholar 

  • Krige, D. G. (1960). On the departure of ore value distributions from lognormal models in South African gold mines. Journal of Chemical, Metallurgical and Mining Society of South Africa, 61, 231–244.

    CAS  Google Scholar 

  • Lark, R. M., & Ferguson, R. B. (2004). Mapping risk of soil nutrient deficiency or excess by disjunctive and indicator kriging. Geoderma, 118, 39–53.

    Article  CAS  Google Scholar 

  • Lin, Y. P., Chang, T. K., & Teng, T. P. (2001). Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing simulation and kriging methods. Environment Geology, 41, 189–199.

    Article  CAS  Google Scholar 

  • Liu, X. M., Wu, J. J., & Xu, J. M. (2006). Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental Pollution, 141, 257–264.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243.

    Article  CAS  Google Scholar 

  • McGrath, D., Zhang, C. S., & Owen, C. T. (2004). Geostatistical analyses and hazard assessment on soil lead in Silvermines, area Ireland. Environmetal Pollution, 127, 239–248.

    Article  CAS  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.

    Article  Google Scholar 

  • Micó, C., Peris, M., Recatalá, L., & Sánchez, J. (2007). Baseline values for heavy metals in agricultural soils in an European Mediterranean region. Science of the Total Environment, 378, 13–17.

    Article  Google Scholar 

  • Nalder, I. A., & Wein, R. W. (1998). Spatial interpolation of climatic normals: Test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 92, 211–225.

    Article  Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311, 205–219.

    Article  CAS  Google Scholar 

  • Okoronkwo, N. E., Igwe, I. C., & Onwuchekwa, E. C. (2005). Risk and health implications of polluted soils for crop production. African Journal of Biotechnology, 4, 521–1524.

    Google Scholar 

  • Robinson, T. P., & Metternicht, G. (2006). Testing the performance of spatial interpolation techniques for mapping soil properties. Computer and Electronic in Agriculture, 50, 97–108.

    Article  Google Scholar 

  • Rodrigues, S., Pereira, M. E., Sarabando, L., Lopes, L., Cachada, A., & Duarte, A. (2006). Spatial distribution of total Hg in urban soils from an Atlantic coastal city (Aveiro, Portugal). Science of the Total Environment, 368, 40–46.

    Article  CAS  Google Scholar 

  • Rodriguez, J. A., Lopez-Arias, M., & Grau corbi, J. M. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geostatistical methods to study spatial variations. Environmental Pollution, 144, 1001–1012.

    Article  Google Scholar 

  • Rodriguez, J. A., Nanos, N., Grau, J. M., Gil, L., & Lopez-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70, 1085–1096.

    Article  CAS  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Pollution, 43, 795–805.

    CAS  Google Scholar 

  • Ross, S. M. (1994). Toxic metals in soil–plant systems. Chichester: Wiley.

    Google Scholar 

  • Salmasi, R., & Tavassoli, A. (2006). Pollution of south of Tehran ground waters with heavy metals. International journal Environmental science and Technology, 3, 147–152.

    CAS  Google Scholar 

  • Shi, J. C., Wang, H. Z., Xu, J. M., Wu, J. J., Liu, X. M., Zhu, H. P., et al. (2007). Spatial distribution of heavy metals in soils: A case study of Changxing, China. Environmental Geology, 52, 1–10.

    Article  CAS  Google Scholar 

  • Steiger, B., Webster, R., Schulin, R., & Lehmann, R. (1996). Mapping heavy metals in polluted soil by disjunctive kriging. Environmental Pollution, 94, 205–215.

    Article  Google Scholar 

  • USEPA (1996). United States environmental protection agency, method 3050B: Acid digestion of sediments, sludges, soils, & oils, SW-846. Washington, DC: USEPA.

    Google Scholar 

  • USEPA (2001). Our built & natural environments, a technical review of the interactions between land use, transportation, and environmental quality. Washington, DC: USEPA.

    Google Scholar 

  • Vicente-Serrano, S. M., Saz-Sánchez, M. A., & Cuadrat, J. M. (2003). Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Climate Research, 24, 161–180.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. (2001). Geostatistics for environmental scientists. In Statistics in Practice. Chichester: Wiley.

    Google Scholar 

  • Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin American Meteorological Society, 63, 1309–1313.

    Article  Google Scholar 

  • Yargholi, B. (2007). Investigation of the Firuzabad wastewater quality-quantity variation for agricultural use. Final report. Iranian Agricultural Engineering Research Institute.

  • Yargholi, B., Azimi, A. A., Baghvand, A., Liaghat, A. M., & Fardi, G. A. (2008). Investigation of cadmium absorption and accumulation in different parts of some vegetables. American–Eurasian journal. Agriculture and Environment Science, 3, 357–364.

    Google Scholar 

  • Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142, 501–511.

    Article  CAS  Google Scholar 

  • Zhang, X. Y., Lin, F. F., Wong, M. T. F., Feng, X. L., & Wang, K. (2008). Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environmental Monitoring and Assessment, 154, 439–449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Hani.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10661-010-1671-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hani, A., Pazira, E. Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environ Monit Assess 176, 677–691 (2011). https://doi.org/10.1007/s10661-010-1612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1612-3

Keywords

Navigation