Skip to main content

Advertisement

Log in

Hydrologic disturbance reduces biological integrity in urban streams

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The impact of urbanization on stream ecosystems is linked by land cover changes to the alteration of the natural hydrology and subsequent physical disruption of stream biota and habitat. Seasonal floods are part of the natural disturbance regime of many streams, but urbanization increases their frequency and magnitude. This study evaluated the impact of hydrologic disturbance on fish and aquatic macroinvertebrates in 81 (56 urban/25 reference) Ohio streams. Hydrologic variables included annual and monthly 24-h rainfall maxima and computed annual peak discharge, with computation supported by GIS-based drainage area delineation and land cover characterization. Ohio biological criteria for fish and macroinvertebrates measured during the late spring and summer were negatively impacted by annual peak discharge in urban streams as compared to reference streams. Results support the application of stormwater best management practices as part of stream restoration efforts to mitigate urbanization impacts to fish and macroinvertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allan, J. D. (1995). Stream ecology, structure and function of running waters. New York: Chapman and Hall.

    Google Scholar 

  • Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–84.

    Article  Google Scholar 

  • Angermeier, P. L., & Karr, J. R. (1994). Biological integrity versus biological diversity as policy directives: Protecting biotic resources. Bioscience, 44, 690–697.

    Article  Google Scholar 

  • Angradi, T. R. (1997). Hydrologic context and macroinvertebrate community response to floods in an Appalachian headwater stream. American Midland Naturalist, 138, 371–386.

    Article  Google Scholar 

  • Bain, M. B., Finn, J. T., & Booke, H. E. (1988). Streamflow regulation and fish community structure. Ecology, 69(2), 382–392.

    Article  Google Scholar 

  • Blinn, D. W., Shannon, J. P., Stevens, L. E., & Carder, J. P. (1995). Consequences of fluctuating discharge for lotic communities. Journal of the North American Benthological Society, 14(2), 233–248.

    Article  Google Scholar 

  • Booker, D. J., & Dunbar, M. J. (2004). Application of Physical Habitat Simulation (PHABSIM) modeling to modified urban river channels. River Research Applications, 20(2), 167–183.

    Article  Google Scholar 

  • Booth, D. B., & Jackson, C. R. (1997). Urbanization of aquatic systems—degradation thresholds, stormwater detention, and the limits of mitigation. JAWRA, 22(5), 1–20

    Google Scholar 

  • Booth, D., & Reinfelt, L. (1993). Consequences of urbanization on aquatic ecosystems: Measured effects, degradation thresholds, and corrective strategies. In Proceedings of watershed’93, A national conference on watershed management, Alexandria, Virginia, 21–24 March 1993.

  • Boulton, A. J., Peterson, C. G., Grimm, N. B., & Fisher, S. G. (1992). Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology, 73(6), 2192–2207.

    Article  Google Scholar 

  • Brown, T., & Caraco, D. (2001). Channel protection. Water Resources IMPACT, 3(6), 16–19.

    Google Scholar 

  • Cappiella, K., & Brown, K. (2000). Derivations of impervious cover for suburban land uses in the Chesapeake Bay watershed. Final report, Ellicott City, Center for Watershed Protection.

  • Chow, V., Maidment, D., & Mays, L. (1988). Applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Clausen, B., & Biggs, B. J. F. (2000). Flow variables for ecological studies in temperate streams: Groupings based on covariance. Journal of Hydrology, 237(3–4), 184–197.

    Article  Google Scholar 

  • Cortes, R. M. V., Ferreira, M. T., Oliveira, S. V., & Oliveira, D. (2002). Macroinvertebrate community structure in a regulated river segment with different flow conditions. River Research Applications, 18, 367–382.

    Article  Google Scholar 

  • Cottingham, P., Walsh, C., Rooney, G., & Fletcher, T. (2003). Urbanization impacts on stream ecology—From syndrome to cure? In Outcomes of workshops held at the symposium on urbanization and stream ecology, Melbourne University, Melbourne, Australia, 8–10 December 2003.

  • Davis, W. S., & Simon, T. P. (1995). Biological assessment and criteria, tools for water resource planning and decision making. Boca Raton: CRC.

    Google Scholar 

  • Detenbeck, N. E., Batterman, S. L., Brady, V. J., Brazner, J. C., Snarski, V. M., Taylor, D. L., et al. (2000). A test of watershed classification systems for ecological risk assessment. Environmental Toxicology and Chemistry, 19(2), 1174–1181.

    Article  CAS  Google Scholar 

  • Detenbeck, N. E., DeVore, P. W., Niemi, G. J., & Limia, A. (1992). Recovery of temperate-stream fish communities from disturbance: A review of case studies and synthesis of theory. Environmental Management, 16, 33–53.

    Article  Google Scholar 

  • Dougherty, M., Dymond, R. L., Goetz, S. J., Jantz, C. A., & Goulet, N. (2004). Evaluation of impervious surface estimates in a rapidly urbanizing watershed. Photogrammetric Engineering & Remote Sensing, 70(11), 1275–1284.

    Google Scholar 

  • Dunne, T., & Leopold, L. B. (1978). Water in environmental planning. New York: Freeman.

    Google Scholar 

  • Erskine, W. D., Terrazzolo, N., & Warner, R. F. (1999). River rehabilitation from the hydrogeomorphic impacts of a large hydro-electric power project: Snowy River, Australia. Regulated Rivers, 15, 3–24.

    Article  Google Scholar 

  • Fowler, R. T., & Death, R. G. (2001). The effect of environmental stability on hyporheic community structure. Hydrobiologia, 445, 85–95.

    Article  Google Scholar 

  • Gammon, J. R., Spacie, A., Hamelink, J. L., & Kaesler, R. L. (1981). Role of electrofishing in assessing environmental quality of the Wabash River. In J. M. Bates & C. I. Weber (Eds.), Ecological assessments of effluent impacts on communities of indigenous aquatic organisms (pp. 307–324). ASTM STP 703. Philadelphia: ASTM.

    Chapter  Google Scholar 

  • Gayraud, S., Philippe, M., & Maridet, L. (2000). The response of benthic macroinvertebrates to artificial disturbance: Drift or vertical movement in the gravel bed of two sub-alpine streams. Archiv für Hydrobiologie, 147, 431–446.

    Google Scholar 

  • Gehrke, P. C., Astles, K. L., & Harris, J. H. (1999). Within-catchment effects of flow alteration on fish assemblages in the Hawkesbury–Nepean River system, Australia. Regulated Rivers, 15, 181–198.

    Article  Google Scholar 

  • Gibbins, C. N., Soulsby, C., Jeffries, M. J., & Acornley, R. (2001). Developing ecologically acceptable river flow regimes: A case study of Kielder reservoir and the Kielder water transfer system. Fisheries Management and Ecology, 8, 463–485.

    Article  Google Scholar 

  • Gore, J. A., Layzer, J. B., & Mead, J. (2001). Macroinvertebrate instream flow studies after 20 years: A role in stream management and restoration. Regulated Rivers, 17, 527–542.

    Article  Google Scholar 

  • Harrell, H. L. (1978). Response of the Devil’s River (Texas) fish community to flooding. Copeia, 1978, 60–68.

    Article  Google Scholar 

  • Harvey, B. C. (1987). Susceptibility of young-of-the-year fishes to downstream displacement by flooding. Transactions of the American Fisheries Society, 116, 851–855.

    Article  Google Scholar 

  • Hax, C. L., & Golladay, S. W. (1998). Flow disturbance of macroinvertebrates inhabiting sediments and woody debris in a prairie stream. American Midland Naturalist, 139, 210–223.

    Article  Google Scholar 

  • Hemphill, N. (1991). Disturbance and variation in competition between two stream insects. Ecology, 72(3), 864–872.

    Article  Google Scholar 

  • Hendricks, A. C., Willis, L. D., & Snyder, C. (1995). Impact of flooding on the densities of selected aquatic insects. Hydrobiologia, 299, 241–247.

    Article  Google Scholar 

  • Horne, A., & Goldman, C. (1994). Limnology (2nd Edn.). New York: McGraw-Hill.

    Google Scholar 

  • Huston, M. (1979). A general hypothesis of species diversity. American Naturalist, 113, 81–101.

    Article  Google Scholar 

  • Hynes, H. B. N. (1970). The ecology of running waters. Toronto: University of Toronto Press.

    Google Scholar 

  • Jungwirth, M., Muhar, S., & Schmutz, S. (2002). Re-establishing and assessing ecological integrity in riverine landscapes. Freshwater Biology, 47, 867–887.

    Article  Google Scholar 

  • Karr, J. R. (1981). Assessment of biological integrity using fish communities. Fisheries, 6, 21–27.

    Article  Google Scholar 

  • Karr, J. R. (1991). Biological integrity: A long-neglected aspect of water resource management. Ecological Applications, 1(1), 66–84.

    Article  Google Scholar 

  • Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., & Schlosser, I. J. (1986). Assessing biological integrity in running waters: A method and its rationale. Champaigne: Illinois Natural History Survey (Special Publication 5).

    Google Scholar 

  • Kinsolving, A. D., & Bain, M. B. (1993). Fish assemblage recovery along a riverine disturbance gradient. Ecological Applications, 3(3), 531–544.

    Article  Google Scholar 

  • Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 10(6), 362.

    Google Scholar 

  • Lancaster, J., & Belyea, L. R. (1997). Nested hierarchies and scale-dependence of mechanisms of flow refugium use. Journal of the North American Benthological Society, 16(1), 221–238.

    Article  Google Scholar 

  • Lenat, D. R., Penrose, D. L., & Eagleson, K. W. (1981). Variable effects of sediment addition on stream benthos. Hydrobiologia, 79, 187–194.

    Article  Google Scholar 

  • Leopold, L. B. (1968). Hydrology for urban land planning: A guidebook on the hydrological effects of urban land use. Washington: United States Geological Survey (Circular 554).

    Google Scholar 

  • Maryland Department of Environment (MDE) and Center for Watershed Protection (CWP) (2000). Maryland stormwater design manual, Appendix D.10.

  • Matthaei, C. D., Peacock, K. A., & Townsend, C. R. (1999). Scour and fill patterns in a New Zealand stream and potential implications for invertebrate refugia. Freshwater Biology, 42, 41–57.

    Article  Google Scholar 

  • Matthews, R., & Richter, B. D. (2007). Application of the indicators of hydrologic alteration software in environmental flow setting. JAWRA, 43(6), 1400–1413.

    Google Scholar 

  • Maxted, J. R., & Shaver, E. (1999). The use of retention basins to mitigate stormwater impacts to aquatic life. In A. Everson, S. Minamyer, J. Dye, P. Heimbrock, & S. Wilson (Eds.), National conference on retrofit opportunities for water resource protection in urban environments (pp. 6–15). Chicago, IL: EPA/625/R-99/002.

  • McAuliffe, J. R. (1984). Competition for space, disturbance, and the structure of a benthic stream community. Ecology, 65(3), 894–908.

    Article  Google Scholar 

  • McCabe, D. J., & Gotelli, N. J. (2000). Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia, 124, 270–279.

    Article  Google Scholar 

  • Meffe, G. K. (1984). Effects of abiotic disturbance on coexistence of predator–prey fish species. Ecology, 65(5), 1525–1534.

    Article  Google Scholar 

  • Merigoux, S., & Doledec, S. (2004). Hydraulic requirements of stream communities: A case study on invertebrates. Freshwater Biology, 49(5), 600–613.

    Article  Google Scholar 

  • Niemczynowicz, J. (1999). Urban hydrology and water management—Present and future challenges. Urban Water, 1, 1–14.

    Article  Google Scholar 

  • Niemi, G. J., DeVore, P., Detenbeck, N., Taylor, D., Lima, A., Pastor, J., et al. (1990). Overview of case studies on recovery of aquatic systems from disturbance. Environmental Management, 14(5), 571–587.

    Article  Google Scholar 

  • Norris, R. H., & Thoms, M. C. (1999). What is river health? Freshwater Biology, 41, 197–209.

    Article  Google Scholar 

  • Ohio Environmental Protection Agency (OEPA) (1987). Biological criteria for the protection of aquatic life: Volume II: Users manual for biological field assessment of Ohio surface waters. OEPA Procedure No. WQMA-SWS-6, 2 November 1987, OEPA, Columbus, OH.

  • OEPA (1989). Biological criteria for the protection of aquatic life: Volume III: Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. OEPA Procedure No. WQMA-SWS-3, 30 September 1989, Columbus, OEPA.

  • OEPA (1994). Biological and water quality study of mill creek and tributaries, butler and hamilton counties, Ohio (Vol. 1). OEPA Technical Report SWS/1993-12-9, Columbus, OEPA.

  • Olden, J. D., & Poff, N. L. (2003). Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research Applications, 19(2), 101–121.

    Article  Google Scholar 

  • Petersen, C. G., & Stevenson, R. J. (1992). Resistance and resilience of lotic algal communities: Importance of disturbance timing and current. Ecology, 73(4), 1445–1461.

    Article  Google Scholar 

  • Pitt, R. (1999). Small storm hydrology and why it is important for the design of stormwater control practices. In W. James (Ed.), Advances in modeling the management of stormwater impacts (Vol. 7). Guelph: Computational Hydraulics International.

    Google Scholar 

  • Poff, N. L. (1992). Why disturbances can be predictable: A perspective on the definition of disturbance in streams. Journal of the North American Benthological Society, 11, 86–92.

    Article  Google Scholar 

  • Poff, N. L., & Allan, J. D. (1995). Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76(2), 606–627.

    Article  Google Scholar 

  • Poff, N. L., Allan, J. D., Bain, M. G., Karr, J. R., Prestegaard, K. L., Richter, B. D., et al. (1997). The natural flow regime: A paradigm for river conservation and restoration. Bioscience, 47(11), 769–784.

    Article  Google Scholar 

  • Power, M. (1999). Introduction, recovery in aquatic ecosystems: Considerations for definition and measurement. Journal of Aquatic Ecosystem Stress and Recovery, 6, 179–180.

    Google Scholar 

  • Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rankin, E. T. (1989). The Qualitative Habitat Evaluation Index (QHEI): Rationale, methods, and application, 6 November 1989. Ohio Environmental Protection Agency, Ecological Assessment Section, Division of Water Quality Planning and Assessment.

  • Rankin, E. T. (1995). Habitat indices in water resource quality assessments. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria, tools for water resource planning and decision making (pp. 181–208). Boca Raton: CRC.

    Google Scholar 

  • Reice, S. R. (2001). The silver lining, the benefits of natural disasters. Princeton: Princeton University Press.

    Google Scholar 

  • Reice, S. R., Wissmar, R. C., & Naiman, R. J. (1990). Disturbance regimes, resilience, and recovery of animal communities and habitats in lotic ecosystems. Environmental Management, 14(5), 647–659.

    Article  Google Scholar 

  • Resh, V., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., Minshall, G. W., et al. (1988). The role of disturbance in stream ecology. Journal of the North American Benthological Society, 7(4), 433–455.

    Article  Google Scholar 

  • Richter, B. D., Baumgartner, J. V., Braun, D. P., & Powell, J. (1998). A spatial assessment of hydrologic alteration within a river network. Regulated Rivers, 14, 329–340.

    Article  Google Scholar 

  • Richter, B. D., Baumgartner, J. V., Braun, D. P., & Wigington, R. (1997). How much water does a river need? Freshwater Biology, 37, 231–249.

    Article  Google Scholar 

  • Richter, B. D., Mathews, R., & Wigington, R. (2003). Ecologically sustainable water management: Managing river flows for ecological integrity. Ecological Applications, 13(1), 206–224.

    Article  Google Scholar 

  • Richter, B. D., & Richter, H. E. (2000). Prescribing flood regimes to sustain riparian ecosystems along meandering rivers. Conservation Biology, 14(5), 1467–1478.

    Article  Google Scholar 

  • Roesner, L. A. (1999). Urban runoff pollution—The state of the practice today and for the 21st Century. Water, Science, and Technology, 39(12), 353–360.

    Article  Google Scholar 

  • Roesner, L. A., & Bledsoe, B. P. (2003). Research needs: Physical effects of wet weather flows on aquatic habitats. Alexandria: Water Environment Research Foundation.

    Google Scholar 

  • Roesner, L. A., Bledsoe, B. P., & Rohrer, C. A. (2005). Physical effects of wet weather discharges on aquatic habitats—Present knowledge and research needs. In 10th International conference on urban drainage, Copenhagen/Denmark, 21–26 August 2005.

  • Rosgen, D. (1996). Applied river morphology. Pagosa Springs: Wildland Hydrology.

    Google Scholar 

  • Roy, A. H., Freeman, M. C., Freeman, B. J., Wenger, S. J., Ensign, W. E., & Meyer, J. L. (2005). Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams. Journal of the North American Benthological Society, 24(3), 656–678.

    Google Scholar 

  • Schlosser, I. J. (1985). Flow Regime, juvenile abundance, and the assemblage structure of stream fishes. Ecology, 66(5), 1484–1490.

    Article  Google Scholar 

  • Schueler, T. R. (1987). Controlling urban runoff—A practical manual for planning and designing urban best management practices. Washington: Metropolitan Washington Council of Governments.

    Google Scholar 

  • Schueler, T. R. (1994). The importance of imperviousness. Watershed Protection Techniques, 1(3), 100–111.

    Google Scholar 

  • Schueler, T. R., & Claytor, R. A. (1996). Design of stormwater filter systems. Ellicott City: Center for Watershed Protection.

    Google Scholar 

  • Schueler, T. R., & Claytor, R. A. (1997). Impervious cover as an urban stream indicator and a watershed management tool. In L. A. Roesner (Ed.), Effects of watershed development and management on aquatic ecosystems. Proceedings of an engineering foundation conference, Snowbird, Utah (pp. 513–529). New York: American Society of Civil Engineers.

    Google Scholar 

  • Scoggins, M., & Arsuffi, T. A. (2001). Effects of hydrologic variability on macroinvertebrate-based bioassessments of streams in Austin, TX. Bulletin NABS, 18(1), 200.

    Google Scholar 

  • Seegrist, D. W., & Gard, R. (1972). Effects of floods on trout in Sagehen Creek, California. Transactions of the American Fisheries Society, 101, 478–482.

    Article  Google Scholar 

  • Siegel, A. F. (1988). Statistics and data analysis, an introduction. New York: Wiley.

    Google Scholar 

  • Stanley, E. H., Buschman, D. L., Boulton, A. J., Grimm, N. B., & Fisher, S. G. (1994). Invertebrate resistance and resilience to intermittency in a desert stream. American Midland Naturalist, 131, 288–300.

    Article  Google Scholar 

  • Stewardson, M. J., & Gippel, C. J. (2003). Incorporating flow variability into environmental flow regimes using the flow events method. River Research Applications, 19(5–6), 459–472.

    Article  Google Scholar 

  • Tharme, R. E. (2003). A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Research Applications, 19(5–6), 397–441.

    Article  Google Scholar 

  • Thiessen, A. H. (1911). Precipitation averages for large areas. Monthly Weather Review, 39(7), 1082–1084.

    Google Scholar 

  • Thomson, J. R. (2002). The effects of hydrological disturbance on the densities of macroinvertebrate predators and their prey in a coastal stream. Freshwater Biology, 47, 1333–1351.

    Article  Google Scholar 

  • Toth, L. A., Dudley, D. R., Karr, J. R., & Gorman, O. T. (1982). Natural and man-induced variability in a Silverjaw Minnow (Ericymba buccata) population. American Midland Naturalist, 107, 284–293.

    Article  Google Scholar 

  • Townsend, C. R. (1989). The patch dynamics concept of stream community ecology. Journal of the North American Benthological Society, 8, 36–50.

    Article  Google Scholar 

  • Townsend, C. R., & Riley, R. H. (1999). Assessment of river health: Accounting for perturbation pathways in physical and ecological space. Freshwater Biology, 41, 393–405.

    Article  Google Scholar 

  • United States Department of Agriculture (USDA) (1986). Urban hydrology for small watersheds. Technical Release 55 (TR-55), Soil Conservation Service, Engineering Division.

  • United Environmental Protection Agency (USEPA) (1993). Urban runoff pollution prevention and control planning handbook. EPA/625/R-93/004. Washington, DC: Office of Research and Development.

    Google Scholar 

  • USEPA (2001). Better assessment science integrating point and nonpoint sources. BASINS Version 3.0, EPA-823-B-01-001.

  • United States Geological Survey (USGS) (2002). Effects of urbanization on stream ecosystems. Fact Sheet FS-042-02.

  • Van Sickle, J. (2003). Analyzing correlations between stream and watershed attributes. Journal of the American Water Resources Association, 39(3), 717–726.

    Article  Google Scholar 

  • Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M. & Morgan, R. P. II (2005). The urban stream syndrome: Current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3), 706–723.

    Google Scholar 

  • Ward, J. V. (1989). The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 8, 2–8.

    Article  Google Scholar 

  • Ward, J. V., Malard, F., & Tockner, K. (2002). Landscape ecology: A framework for integrating pattern and process in river corridors. Landscape Ecology, 17(Suppl. 1), 34–45.

    Google Scholar 

  • Wetzel, R. G. (2001). Limnology, lake and river ecosystems (3rd Edn.). San Diego: Academic.

    Google Scholar 

  • White, P. S., & Pickett, S. T. A. (1985). Natural disturbances and patch dynamics: An introduction. In S. T. A. Pickett & P. S. White (Eds.), The ecology of natural disturbance and patch dynamics. Orlando: Academic.

    Google Scholar 

  • Wilkinson, L., Blank, G., & Gruber, C. (1996). Desktop data analysis with systat. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Yoder, C. O., Miltner, R., & White, D. (1999). Assessing the status of aquatic life designated uses in urban and suburban watersheds. In A. Everson, S. Minamyer, J. Dye, P. Heimbrock, & S. Wilson (Eds.), National conference on retrofit opportunities for water resource protection in urban environments (pp. 16–28). Chicago, IL: EPA/625/R-99/002.

  • Yoder, C. O., Miltner, R., & White, D. (2000). Using biological criteria to assess and classify urban streams and develop improved landscape indicators. In Proceedings of the national conference on tools for urban water resource management & protection. Conference draft (pp. 56–82). Chicago, IL: EPA/625/R-00/001.

  • Yoder, C. O., & Rankin, E. (1999). Biological criteria for water resource management. In Measures of environmental performance and ecosystem condition (pp. 227–259). Washington: National Academy Press.

    Google Scholar 

  • Yount, J. D., & Niemi, G. J. (1990). Recovery of lotic communities and ecosystems from disturbance—A narrative review of case studies. Environmental Management, 14(5), 547–569.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Coleman II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, J.C., Miller, M.C. & Mink, F.L. Hydrologic disturbance reduces biological integrity in urban streams. Environ Monit Assess 172, 663–687 (2011). https://doi.org/10.1007/s10661-010-1363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1363-1

Keywords

Navigation