Skip to main content

Advertisement

Log in

Groundwater geochemistry in the Alisadr, Hamadan, western Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The chemical composition of 59 well water samples throughout the Alisadr area, Hamadan, western Iran was determined in order to describe the background ion concentration and to identify the major hydrogeochemical processes that control the observed groundwater chemistry. The hydrochemical types, Ca–HCO3, Ca–SO4, dominate the largest part of the groundwater followed by water types Ca–Cl and Mg–HCO3. Total hardness indicated that 30% of groundwater samples fell in the very hard water category. Ninety-seven percent of the water samples showed nitrate (\({\rm NO}_{3}^{-})\) concentrations above the human affected value (13 mg l − 1 \({\rm NO}_{3}^{-})\), while 15% exceeded the maximum acceptable level (50 mg l − 1 \({\rm NO}_{3}^{-})\) according to WHO regulations. With respect to sodium adsorption ratio, the groundwater can be used for irrigation on almost all soils with little danger of the developing harmful levels of exchangeable Na + . But with respect to electrical conductivity, the water quality for irrigation was low to medium, providing the necessary drainage to avoid the buildup of toxic salt concentrations. Geochemical modeling using PHREEQC enabled prediction of the saturation state of minerals and indicated the dissolution and precipitation reactions occurring in the groundwater. Groundwaters were undersaturated with respect to amorphous silica. Stability diagram indicated that the dominant cluster of groundwater samples fell into the K-feldspar field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appelo, C. A. J., & Postma, D. (1993). Geochemistry, groundwater and pollution (536 pp.). Rotterdam: Balkema.

    Google Scholar 

  • Baharifar, A., Moinevaziri, H., Bellon, H., & Pique, A. (2004). The crystalline complexes of Hamadan (Sanandaj–Sirjan zone, western Iran): Metasedimentary Mezoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. Comptes Rendus Geoscience, 336, 1443–1452. doi:10.1016/j.crte.2004.09.014.

    Article  CAS  Google Scholar 

  • Burkart, M. R., & Kolpin, D. W. (1993). Hydrologic and land use factors associated with herbicides and nitrates in near-surface aquifers. Journal of Environmental Quality, 22, 646–656.

    Article  CAS  Google Scholar 

  • Condesso de Melo, M. T., Marques da Silva, M. A., & Edmunds, W. M. (1999). Hydrochemistry and flow modelling of the Aveiro multilayer Cretaceous aquifer. Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere, 4, 331–336.

    Google Scholar 

  • Dalai, T. K., Krishnaswami, S., & Sarin, M. M. (2002). Barium in the Yamuna River System in the Himalaya: Sources, fluxes, and its behavior during weathering and transport. Geochemistry Geophysics Geosystems, 3, 1076.

    Article  Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters (3rd ed., 436 pp.). New Jersey: Prentice Hall.

    Google Scholar 

  • Eckhardt, D. A. V., & Stackelberg, P. E. (1995). Relation of groundwater quality to land use on Long Island, New York. Ground Water, 33, 1019–1033. doi:10.1111/j.1745-6584.1995.tb00047.x.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (p. 604). New Jersey: Prentice-Hall.

    Google Scholar 

  • Fried, J. J. (1991). Nitrates and their control in the EEC aquatic environment. In I. Bogardi & R. D. Kuzelka (Eds.), Nitrate contamination: Exposure, consequence, and control, NATO ASI Serial G: Ecological Sciences 309 (pp. 3–8). Berlin: Springer.

    Google Scholar 

  • Garcia, M. G., delv Hidalgo, M., & Blessa, M. A. (2001). Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeology Journal, 9, 597–610. doi:10.1007/s10040-001-0166-4.

    Article  CAS  Google Scholar 

  • Garrels, R. M., & Christ, C. L. (1965). Solutions, minerals, and equilibria. New York: Harper and Row.

    Google Scholar 

  • Hallberg, G. R. (1989). Nitrate in groundwater in the United States. In R. F. Follee (Ed.), Nitrogen management and groundwater protection (pp. 35–138). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Hidalgo, M. C., & Cruz-Sanjulian, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16, 745–758. doi:10.1016/S0883-2927(00)00078-0.

    Article  CAS  Google Scholar 

  • Jalali, M. (2005a). Nitrates leaching from agricultural land in Hamadan, western Iran. Agriculture Ecosystems & Environment, 110, 210–218. doi:10.1016/j.agee.2005.04.011.

    Article  CAS  Google Scholar 

  • Jalali, M. (2005b). Major ion chemistry in the Bahar area, Hamadan, western Iran. Environmental Geology, 47, 763–772. doi:10.1007/s00254-004-1200-3.

    Article  CAS  Google Scholar 

  • Jalali, M. (2007). A study of quantity/intensity relationships of potassium in some calcareous soils of Iran. Arid Land Research and Management, 21, 133–141. doi:10.1080/15324980701236382.

    Article  Google Scholar 

  • Jalali, M., & Kolahchi, Z. (2008). Groundwater quality in an irrigated, agricultural area of northern Malayer, western Iran. Nutrient Cycling in Agroecosystems, 18(1), 95–105. doi:10.1007/s10705-007-9123-5.

    Article  Google Scholar 

  • Jeong, C. H. (2001). Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology (Amsterdam), 252, 194–210. doi:10.1016/S0022-1694(01)00481-4.

    Article  Google Scholar 

  • Laegreid, M., Bockman, O. C., & Kaarstad, O. (1999). Agriculture, fertilizers and environment. Wallingford: CAB International.

    Google Scholar 

  • Lee, S. Y., & Gilkes, R. J. (2005). Groundwater geochemistry and composition of hardpans in southwestern Australian regolith. Geoderma, 126, 59–84. doi:10.1016/j.geoderma.2004.11.007.

    Article  CAS  Google Scholar 

  • McLean, W., Jankowski, J., & Lavitt, N. (2000). Groundwater quality and sustainability in an alluvial aquifer, Australia. In O. Sililo et al. (Eds.), Groundwater, past achievements and future challenges (pp. 567–573). Rotterdam: Balkema.

    Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    CAS  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. doi:10.1016/S0003-2670(00)88444-5.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). Users guide to PHREEQC (version 2) – A computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. U.S. Geological Survey Water Resources Investigations Report 99–4259.

  • Pratt, P. F. (1985). Agriculture and groundwater quality. CAST Report, 103.

  • Ritcher, B. C., & Kreitler, W. C. (1993). Geochemical techniques for identifying sources of groundwater salinization. New York: CRC. ISBN 1-56670-000-0.

    Google Scholar 

  • Rowell, D. L. (1994). Soil science: Methods and applications. Essex, UK: Longman Scientific and Technical.

    Google Scholar 

  • Sabziparvar, A. A. (2003). The analysis of aridity and meteorological drought indices in the west of Iran. Research Report. Bu-Ali Sina University, Hamadan, Iran.

  • Sawyer, N. N., Mc Carty, P. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science (5th ed., p. 752). New York: McGraw-Hill.

    Google Scholar 

  • Sepahi, A. (1999). Petrology of the Alvand plutonic complex with special reference on granitoids. PhD thesis, Tarbiat-Moallem University, Tehran, Iran (in Persian).

  • Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysics Research, 92, 8293–8302.

    Google Scholar 

  • Stimson, J., Frape, S., Drimmie, R., & Rudolph, D. (2001). Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valley, Bolivia. Applied Geochemistry, 16, 1097–1114. doi:10.1016/S0883-2927(01)00019-1.

    Article  CAS  Google Scholar 

  • Strebel, O., Duynisveld, W. H. M., & Bottcher, J. (1989). Nitrate pollution of groundwater in western Europe. Agriculture Ecosystems & Environment, 26, 189–214. doi:10.1016/0167-8809(89)90013-3.

    Article  CAS  Google Scholar 

  • Umar, A., Umar, R., & Ahmad, M. S. (2001). Hydrogeological and hydrochemical framework of regional aquifer system in Kali-Ganga sub-basin, India. Environmental Geology, 40(4–5), 602–611. doi:10.1007/s002540000215.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (2000). Ambient water quality criteria recommendations. Rivers and streams in nutrient ecoregion IX. Office of Water 4304. EPA 822-B-00-019. USEPA, Washington, DC.

  • WHO (World Health Organization) (2002). Water and sanitation. Guidelines for drinking-water quality. www.who.int/water-sanitation-health/GDWQ/Summary-tables/Sumtab.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jalali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalali, M. Groundwater geochemistry in the Alisadr, Hamadan, western Iran. Environ Monit Assess 166, 359–369 (2010). https://doi.org/10.1007/s10661-009-1007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1007-5

Keywords

Navigation