Skip to main content
Log in

A Revised Exposition of the Green–Naghdi Theory of Heat Propagation

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We offer a revised exposition of the three types of heat-propagation theories proposed by Green and Naghdi. Those theories, which make use of the notion of thermal displacement and allow for heat waves, are at variance with the standard Fourier theory; they have attracted considerable interest, and have been applied in a number of disparate physical circumstances, where heat propagation is coupled with elasticity, viscous flows, etc. (Straughan in Heat waves. Applied mathematical sciences, vol. 177. Springer, Berlin, 2011). However, their derivation is not exempt from criticisms, that we here detail, in hopes of opening the way to reconsideration of old applications and proposition of new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, at variance with what we did when writing (9)–(11) to keep our notation lighter, we have carefully distinguished the heat-influx and free-energy constitutive mappings according to the type of theory they are meant for: e.g., we have written \(\widehat{\psi}_{\text{I}}\) in the case of Type I theory and \(\widehat{\psi}_{\text{II}},\widehat{\psi}_{\text{III}}\) in the other two cases.

  2. In fact, it would be necessary to take κ≥0 (a reasonable assumption) and κ ⋆⋆=0, an assumption that he have seen to be expedient also to obtain the ‘heat equation’ (39), and that, together with (26)2, would yield (40).

References

  1. Bargmann, S.: Remarks on the Green–Naghdi theory of heat conduction. J. Non-Equilib. Thermodyn. (2013). doi:10.1515/jnetdy-2012-0015

    Google Scholar 

  2. Bargmann, S., Steinmann, P.: Classical results for a non-classical theory: remarks on thermodynamic relations in Green–Naghdi thermo-hyperelasticity. Contin. Mech. Thermodyn. 19(1–2), 59–66 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bargmann, S., Favata, A., Podio-Guidugli, P.: On energy and entropy influxes in the Green–Naghdi type III theory of heat conduction. Proc. R. Soc. Lond. A (2013). 10.1098/rspa.2012.0705

    Google Scholar 

  4. Coleman, B., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  5. Green, A., Laws, N.: On the entropy production inequality. Arch. Ration. Mech. Anal. 45(1), 47–53 (1972)

    Article  MathSciNet  Google Scholar 

  6. Green, A., Naghdi, P.: On thermodynamics and the nature of the second law. Proc. R. Soc. Lond. A 4, 253–270 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  7. Green, A., Naghdi, P.: A demonstration of consistency of an entropy balance with balance of energy. Z. Angew. Math. Phys. 42, 159–168 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Green, A., Naghdi, P.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432(1885), 171–194 (1991). doi:10.1098/rspa.1991.0012

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Green, A., Naghdi, P.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15(2), 253–264 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. Green, A., Naghdi, P.: Thermoelasticity without energy-dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Green, A., Naghdi, P.: A new thermoviscous theory for fluids. J. Non-Newton. Fluid Mech. 56(3), 289–306 (1995)

    Article  Google Scholar 

  12. Green, A., Naghdi, P.: An extended theory for incompressible viscous fluid flow. J. Non-Newton. Fluid Mech. 66(2–3), 233–255 (1996)

    Article  Google Scholar 

  13. Joseph, D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41–73 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Joseph, D., Preziosi, L.: Addendum to the paper “Heat waves”. Rev. Mod. Phys. 62(2), 375–391 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. Liu, I.S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46, 131–148 (1972)

    MATH  Google Scholar 

  16. Liu, I.S.: On the entropy flux/heat flux relation in thermodynamics with Lagrange multipliers. Contin. Mech. Thermodyn. 8, 247–256 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Liu, I.S.: Continuum Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  18. Liu, I.S.: Entropy flux relation for viscoelastic bodies. J. Elast. 90, 259–270 (2008)

    Article  MATH  Google Scholar 

  19. Liu, I.S.: On entropy flux of transversely isotropic elastic bodies. J. Elast. 96, 97–104 (2009)

    Article  MATH  Google Scholar 

  20. Müller, I.: The coldness, a universal function in thermoelastic bodies. Arch. Ration. Mech. Anal. 41, 319–332 (1971)

    Article  MATH  Google Scholar 

  21. Müller, I.: Die Kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten. Arch. Ration. Mech. Anal. 30, 1–36 (1971)

    Article  Google Scholar 

  22. Müller, I.: Thermodynamics. Pitman, London (1985)

    MATH  Google Scholar 

  23. Naghi, G.B., Ortiz, O., Reula, O.: The behaviour of hyperbolic heat equations’ solutions near their parabolic limits. J. Math. Phys. 35 (1994)

  24. Podio-Guidugli, P.: A virtual power format for thermomechanics. Contin. Mech. Thermodyn. 20(8), 479–487 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Podio-Guidugli, P.: Dissipative entropy makes the heat equation hyperbolic. Atti Acc. Pel. Per. 90 (2012)

  26. Podio-Guidugli, P.: On heat propagation in rigid conductors (2012, forthcoming)

  27. Straughan, B.: Heat Waves. Applied Mathematical Sciences, vol. 177. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  28. von Helmholtz, H.: Studien zur Statik monocyklischer Systeme. Sitz. K. Preuss. Akad. Wiss. Berl. 159–177 (1884)

Download references

Acknowledgements

This research was done while PPG was visiting Hamburg University of Technology and Helmholtz-Zentrum Geesthacht. The financial support of the German Science Foundation is gratefully acknowledged. AF gratefully acknowledges the financial support of INdAM-GNFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Favata.

Additional information

German Science Foundation (DFG).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bargmann, S., Favata, A. & Podio-Guidugli, P. A Revised Exposition of the Green–Naghdi Theory of Heat Propagation. J Elast 114, 143–154 (2014). https://doi.org/10.1007/s10659-013-9431-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-013-9431-8

Keywords

Mathematics Subject Classification

Navigation