Skip to main content
Log in

Evaluation of selected Ethiopian sorghum genotypes for resistance to anthracnose

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Sorghum anthracnose caused by the fungal pathogen Colletotrichum sublineolum, is one of the most economically important diseases of sorghum globally and in Ethiopia. Breeding for resistance to this highly variable pathogen requires identification of new sources of resistance. Here we describe the identification of new sources of anthracnose resistance from a field-based screening of 225 landrace genotypes of sorghum collected from different parts of Ethiopia. Field trials were conducted at Assosa and Bako Agricultural research centres under natural infection to evaluate anthracnose resistance. Analysis of variance revealed significant differences in mean square due to environment, genotype and genotype by environment interactions (P ≤ 0.01) for leaf anthracnose disease relative AUDPC. Most genotypes from Western Ethiopia, a region known for high rain fall and high anthracnose disease incidence, displayed resistance reactions. Disease severity index and AUDPC showed negative correlation with agronomic, yield and yield related traits. Cluster analysis based on disease parameters suggested that accessions from neighbouring regions shared strong similarity. Seven genotypes at Bako and five genotypes at Assosa showed moderate resistance. Anthracnose resistance and better yield performance across locations were observed for three genotypes. These materials will be important for genetic studies to determine genetic control of resistance and for resistance breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Naggar, A. M. M., El-salam, A. M. A., Hovny, M. R. A., & Yaseen, W. Y. S. (2018). Genotype × environment interaction and stability of Sorghum bicolor lines for some agronomic and yield traits in Egypt. Asian Journal of Agricultural and Horticultural Research, 1(3), 1–14.

    Article  Google Scholar 

  • Berenji, J., & Dahlberg, J. (2004). Perspectives of sorghum in Europe. Journal of Agronomy and Crop Science, 190, 332–338. https://doi.org/10.1111/j.1439-037X.2004.00102.x

    Article  Google Scholar 

  • Campbell, C., & Madden, L. (1990). Introduction to plant disease epidemiology. Wiley.

    Google Scholar 

  • Chala, A., Alemu, T., Prom, L. K., & Tronsmo, A. M. (2010). Effect of host genotypes and weather variables on the severity and temporal dynamics of sorghum anthracnose in Ethiopia. The Plant Pathology Journal, 9(1), 39–46. https://doi.org/10.3923/ppj.2010.39.46

    Article  Google Scholar 

  • Chala, A., Brurberg, M. B., & Tronsmo, A. M. (2007). Prevalence and intensity of sorghum anthracnose in Ethiopia. Journal of SAT Agricultural Research, 5(1), 1.

    Google Scholar 

  • Chala, A., Brurberg, M. B., & Tronsmo, A. M. (2010). Incidence and severity of sorghum anthracnose in Ethiopia. The Plant Pathology Journal, 9, 23–30. https://doi.org/10.3923/PPJ.2010.23.30

    Article  Google Scholar 

  • Chala, A., & Tronsmo, A. M. (2012). Evaluation of Ethiopian sorghum accessions for resistance against Colletotrichum sublineolum. European Journal of Plant Pathology, 132, 179–189. https://doi.org/10.1007/s10658-011-9861-8

    Article  Google Scholar 

  • Chala, A., Tronsmo, A. M., & Brurberg, M. B. (2011). Genetic differentiation and geneflow in Colletotrichum sublineolum in Ethiopia, the center of origin and diversity of sorghum, as revealed by AFLP analysis. Plant Pathology, 60, 474–482. https://doi.org/10.1111/j.1365-3059.2010.02389.x

    Article  CAS  Google Scholar 

  • Cota, L. V., Souza, A. G. C., Costa, R. V., Silva, D. D., Lanza, F. E., Aguiar, F. M., & Figueiredo, J. E. F. (2017). Quantification of yield losses caused by leaf anthracnose on sorghum in Brazil. Journal of Phytopathology, 165, 479–485. https://doi.org/10.1111/jph.12582

    Article  CAS  Google Scholar 

  • Cuevas, H. E., Prom, L. K., & Erpelding, J. E. (2014). Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112-14. Molecular Breeding, 34, 1943–1953. https://doi.org/10.1007/s11032-014-0151-y

    Article  CAS  Google Scholar 

  • Doggett, H. (1988). Sorghum (2nd ed.). Longman, Wiley.

    Google Scholar 

  • Erpelding, J. E. (2009). Anthracnose disease response for photoperiod insensitive Ethiopian germplasm from the US sorghum collection. World Journal of Agricultural Sciences, 5, 707–713.

    Google Scholar 

  • Erpelding, J. E. (2010). Anthracnose resistance in sorghum breeding lines developed from Ethiopian germplasm. Plant Health Progress. https://doi.org/10.1094/PHP-2010-1123-02-RS

    Article  Google Scholar 

  • Erpelding, J. E., & Prom, L. K. (2004). Evaluation of Malian sorghum for resistance against anthracnose. Plant Pathology, 3(2), 65–71. https://doi.org/10.3923/ppj.2004.65.71

    Article  Google Scholar 

  • Erpelding, J. E., & Prom, L. K. (2006). Variation for anthracnose resistance within the sorghum germplasm collection from Mozambique, Africa. Plant Pathology Journal, 5(1), 28–34. https://doi.org/10.3923/ppj.2006.28.34

    Article  Google Scholar 

  • Girma, G., Nida, H., Tirfessa, A., Lule, D., Bejiga, T., Seyoum, A., Mekonen, M., Nega, A., Dessalegn, K., Birhanu, C., Bekele, A., Gebreyohannes, A., Ayana, G., Tesso, T., Ejeta, G., & Mengiste, T. (2020). A comprehensive phenotypic and genomic characterization of Ethiopian sorghum germplasm defines core collection and reveals rich genetic potential in adaptive traits. Plant Genome, 13(3), e20055. https://doi.org/10.1002/tpg2.20055

    Article  CAS  PubMed  Google Scholar 

  • Girma, T., Fekede, A., Temam, H., Tewabech, T., & Eshetu, B. (2009). Review of maize, sorghum and millet pathology research. In A. Tadesse (Ed.), Increasing crop productivity through improved plant protection (II) (pp. 245–301). PPSE and EIAR.

    Google Scholar 

  • Gwary, M., Bwatanglang, N., & Bdliya, B. S. (2008). Integrated management of sorghum anthracnose through the use of fungicide, crop varieties and manipulation of sowing date in Sudan savanna of Nigeria. International Journal of Agriculture and Biology, 10, 661–664.

    Google Scholar 

  • Hulluka, M., & Esele, J. P. E. (1992). Sorghum diseases in eastern Africa. In W. J. A. de Milliano, R. A. Frederiksen, & G. D. Bergsten (Eds.), Sorghum and millet diseases: A second world view (p. 21). ICRISAT.

    Google Scholar 

  • Kumar, N. V., Reddy, C. V. C., & Reddy, P. V. R. M. (2012). Study on character association in rabi sorghum (Sorghum bicolor L. Moench). Plant Archives, 12(2), 1049–1051.

    Google Scholar 

  • Louis, K. P., Erpelding, J., Perumal, R., Isakeit, T., & Cuevas, H. (2012). Response of sorghum accessions from four African countries against Colletotrichum sublineolum, causal agent of sorghum anthracnose. American Journal of Plant Sciences, 3, 125–129. https://doi.org/10.4236/ajps.2012.31014

    Article  Google Scholar 

  • Madden, L. V., Hughes, G., & Van den Bosh, F. (2008). The study of plant disease epidemics. The American Phytopathology Society.

    Google Scholar 

  • Mann, J. A., Kimber, C. T., & Miller, F. R. (1983). The origin and early cultivation of sorghum in Africa. Texas Agricultural Experiment Station Bulletin. http://hdl.handle.net/1969.1/128074

  • Marley, P. S. (2004). Effect of integrating host plant resistance with time of planting or fungicides on anthracnose and grain mold and yield of sorghum in the Nigeria northern Guinea Savanna. The Journal of Agricultural Science, 142, 345–350. https://doi.org/10.1017/S0021859604004277

    Article  Google Scholar 

  • Marley, P. S., Thakur, R. P., & Ajayi, O. (2001). Variation among foliar isolates of Colletotrichum sublineolum of sorghum in Nigeria. Field Crops Research, 69(2), 133–142. https://doi.org/10.1016/S0378-4290(00)00128-3

  • Mengistu, G., Shimelis, H., Laing, M., & Lule, D. (2019). Assessment of farmers’ perceptions of production constraints, and their trait preferences of sorghum in western Ethiopia: Implications for anthracnose resistance breeding. Acta Agriculture Scandinavica Section B-Soil and Plant Science, 69(3), 1–9. https://doi.org/10.1080/09064710.2018.1541190

    Article  Google Scholar 

  • MINITAB. (2003). MINITAB statistical software, version 14.13.0.0. Minitab Inc.

    Google Scholar 

  • Ngugi, H. K., King, S. B., Abayo, G. O., & Reddy, Y. V. R. (2002). Prevalence and severity of sorghum diseases in Western Kenya. Plant Disease, 86, 65–70. https://doi.org/10.1094/PDIS.2002.86.1.65

    Article  CAS  PubMed  Google Scholar 

  • Nida, H., Girma, G., Mekonen, M., Lee, S., Seyoum, A., Dessalegn, K., Tadesse, T., Ayana, G., Senbetay, T., Tesso, T., Ejeta, G., & Mengiste, T. (2019). Identification of sorghum grain mold resistance loci through genome wide association mapping. Journal of Cereal Science, 85, 295–304. https://doi.org/10.1016/j.jcs.2018.12.016

    Article  CAS  Google Scholar 

  • Pande, S., Thakur, R. P., Karunakar, R. I., Bandyopadhyay, R., & Reddy, B. V. S. (1994). Development of screening methods and identification of stable resistance to anthracnose in sorghum. Field Crops Research, 38, 157–166. https://doi.org/10.1016/0378-4290(94)90087-6

    Article  Google Scholar 

  • Reddy, B. V. S., Ramesh, S., Reddy, P. S., & Kumar, A. A. (2009). Genetic enhancement for drought tolerance in sorghum. Plant Breed Reviews, 31, 189–222. https://doi.org/10.1002/9780470593783.ch3

    Article  CAS  Google Scholar 

  • Reddy, B. V. S., Ramesh, S., Reddy, P. S., Ramaiah, B., Salimath, P. M., & Kachapur, R. (2005). Sweet sorghum-A potential alternate raw material for bioethanol and bioenergy. International Sorghum and Millets Newsletter, 46, 79–86.

    Google Scholar 

  • Rosenow, D.T., Frederiksen, R.A. (1982). Breeding for disease resistance in sorghum. In House, L.R., Mughogho, L.K., Peacock, J.M. (eds.) Sorghum in the Eighties. Proceedings of the international symposium on sorghum, ICRISAT, pp. 447–455.

  • SAS Institute Inc. (2013). SAS® 9.4 guide to software updates. SAS Institute Inc.

    Google Scholar 

  • Sharma, R., Upadhyaya, H. D., Manjunatha, S. V., Rao, V. P., & Thakur, R. P. (2012). Resistance to foliar diseases in a mini-core collection of sorghum germplasm. Plant Disease, 96, 1629–1633. https://doi.org/10.1094/PDIS-10-11-0875-RE

    Article  PubMed  Google Scholar 

  • Sherriff, C., Whelan, M. J., Arnold, G. M., & Bailey, J. A. (1995). rDNA sequence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycological Research, 99, 475–478. https://doi.org/10.1016/S0953-7562(09)80649-7

    Article  CAS  Google Scholar 

  • Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology, 102(4), 381–389. https://doi.org/10.1094/PHYTO-07-11-0216

    Article  PubMed  Google Scholar 

  • Sleper, D. A., & Poehlman, J. M. (2006). Breeding field crops (5th ed.). Wiley-Blackwell.

    Google Scholar 

  • Sowmy, H. H., Brunda, S. M., Shinde, D. G., Gowda, V., & Kamatar, M. Y. (2013). Estimation of correlation coefficients and path for yield traits in grain mold tolerant F3 progenies of sorghum. International Journal of Science and Research, 4(4), 1420–1424.

    Google Scholar 

  • Tadesse, H., & Feyissa, T. (2013). Analysis of genetic diversity of Sorghum bicolor ssp bicolor (L.) Moench using SSR markers. Asian Journal of Plant Science, 12(2), 61–70. https://doi.org/10.3923/ajps.2013.61.70

    Article  CAS  Google Scholar 

  • Thakur, R. P., & Mathur, K. (2000). Anthracnose. In R. A. Frederiksen & G. N. Odvody (Eds.), Compendium of sorghum diseases (2nd ed., p. 40). APS Press.

    Google Scholar 

  • Thakur, R. P., Rao, V. P., Wu, B. M., Subbaro, K. V., Mathur, K., Tailor, H. C., Kushwaha, U. S., Dwivedi, R. R., Krisnaswamy, R., Hiremath, R. V., & Indira, S. (2007). Genetic resistance to foliar anthracnose in sorghum and pathogenic variability in Colletotrichum graminicola. Indian Phytopathology, 60(1), 13–23.

    Google Scholar 

  • Tsehaye, Y., Abera, Z., Kebede, A., & Ghebremichael, B. (2009). A dynamic sorghum (Sorghum bicolor (L.) Moench) diversity management in situ and livelihood resilience in south and central Tigray region. Momona Ethiopian Journal of Science, 1, 67–94. https://doi.org/10.4314/mejs.v1i2.46049

    Article  Google Scholar 

  • Valério, H. M., Resende, M. A., Weikert-Oliveira, R. C. B., & Casela, C. R. (2005). Virulence and molecular diversity in Colletotrichum graminicola from Brazil. Mycopathologia, 159, 449–59. https://doi.org/10.1007/s11046-005-0373-y

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, B. E. J. (1969). An introduction to plant diseases. Wiley.

    Google Scholar 

Download references

Acknowledgements

The first author acknowledges graduate study scholarship opportunity offered by Ethiopian Institute of Agricultural Research (EIAR) and Oromia Agricultural Research Institute (OARI). We acknowledge the national sorghum improvement program staff at Melkassa Agricultural Research Center (MARC) and cereal technology generation team staff members of both Bako and Assosa Agricultural Research Centers who handled and contributed to the field trial from planting to harvesting.

Funding

This study is made possible through funding by the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet through grants from American People provided to the United States Agency for International Development (USAID) under cooperative agreement No. AID-OAA-A-13-00047. The contents are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tesfaye Mengiste.

Ethics declarations

Ethical approval

All authors are fully aware of this submission and have declared that they have no competing interests.

Animal and human participants

The results presented in this manuscript did not involve any protected and/or endangered species, field studies, human participants, specimens or tissue samples or vertebrate animals, embryos or tissues.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dessalegn, K., Lule, D., Nida, H. et al. Evaluation of selected Ethiopian sorghum genotypes for resistance to anthracnose. Eur J Plant Pathol 162, 79–91 (2022). https://doi.org/10.1007/s10658-021-02386-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02386-6

Keywords

Navigation