Skip to main content

Advertisement

Log in

Interaction between ‘Candidatus Phytoplasma australasiae’ and Tomato yellow leaf curl virus in tomato plants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

A Correction to this article was published on 11 November 2020

This article has been updated

Abstract

To evaluate the effect of mixed infection of two main pathogens of tomato in Iran, the interaction between tomato big bud phytoplasma (TBBP, 16SrII-D) and Tomato yellow leaf curl virus (TYLCV) was investigated under greenhouse condition. Tomato plants were graft-inoculated either with TBBP or TYLCV alone or together simultaneously and non-simultaneously. Symptoms expression and incubation period of the diseases were evaluated on all inoculated plants. To assess pathogen development, the concentrations of TBBP and TYLCV were compared at 10, 20, 40 and 70 days post-inoculation using quantitative PCR assays. In all replications, the tomato plants doubly inoculated with TBBP + TYLCV showed milder symptoms and longer incubation period than those singly inoculated with TBBP or TYLCV. Results also showed a reduction of TYLCV and TBBP concentrations in doubly inoculated plants when compared to single infection, although these reductions were not always statistically significant. In the tomato plants simultaneously inoculated with TBBP and TYLCV, the phytoplasma and virus concentrations were significantly lower at 70 days post-inoculation. These results suggest an antagonism between TYLCV and TBBP when infecting the tomato plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 11 November 2020

    This erratum is published as author overlooked inclusion of minor correction during proofing.

References

  • Alcaide, C., Rabadán, M. P., Moreno-Pérez, M. G., & Gómez, P. (2020). Implications of mixed viral infections on plant disease ecology and evolution. In: M. Kielian, T. C. Mettenleiter, & M. J. Roossinck, (Eds.), Advances in virus research, 106, (pp. 145–169). Academic Press.

  • Amiri Mazraie, M., Izadpanah, K., Hamzehzarghani, H., Salehi, M., & Faghihi, M. M. (2019). Spread and colonization pattern of 'Candidatus Phytoplasma aurantifolia' in lime plants [Citrus aurantifolia (Christm.) Swingle] as revealed by real-time PCR assay. Journal of Plant Pathology, 101(3), 629–637.

    Google Scholar 

  • Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 63, 3523–3543.

    CAS  PubMed  Google Scholar 

  • Bananej, K. (2016). An analysis on the status of tomato yellow leaf curl disease. Applied Entomology and Phytopathology, 84, 157–173.

    Google Scholar 

  • Bananej, K., Vahdat, A., & Hosseini Salekdeh, G. H. (2009). Begomoviruses associated with yellow leaf curl disease of tomato in Iran. Journal of Phytopathology, 57(4), 243–247.

  • Bertazzon, N., Forte, V., Filippin, L., Causin, R., Maixner, M., & Angelini, E. (2017). Association between genetic variability and titre of grapevine pinot gris virus with disease symptoms. Plant Pathology, 66, 949–959.

    Google Scholar 

  • Choueiri, E., Salar, P., Jreijiri, F., Zammar, S., Massaad, R., Abdul-Nour, H., Bové, J., Danet, J. L., & Foissac, X. (2007). Occurrence and distribution of 'Candidatus Phytoplasma trifolii' associated with diseases of solanaceous crops in Lebanon. European Journal of Plant Pathology, 118, 411–416.

    CAS  Google Scholar 

  • Davoodi, A., Panjekeh, N., Moslemkhani, K., & Taheri, A. H. (2019). Detection and molecular characterization of tomato big bud disease in Qazvin province. Crop Protection, 8(4), 379–388.

    Google Scholar 

  • Del Serrone, P., Marzachi, C., Bragaloni, M., & Galeffi, P. (2001). Phytoplasma infection of tomato in Central Italy. Phytopathologia Mediterranea, 40, 137–142.

    Google Scholar 

  • Deng, S., & Hiruki, C. (1991). Amplification of 16S rRNA genes from culturable and non-culturable mollicutes. Journal of Microbiology Methods, 14, 53–61.

    CAS  Google Scholar 

  • Deng, D., McGrath, P. F., Robinson, D. J., & Harrison, B. D. (1994). Detection and differentiation of whitefly-transmitted geminiviruses in plants and vector insects by the polymerase chain reaction with degenerate primers. Annals of Applied Biology, 125, 327–336.

    CAS  Google Scholar 

  • Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

    Google Scholar 

  • El-Saghir, S. M. (2017). Detection of mixed infection of Prunus necrotic ringspot virus and phytoplasma in peach trees in Egypt. Journal of Virological Sciences, 1, 91–99.

    Google Scholar 

  • Foissac, X., & Wilson, M. R. (2009). Current and possible future distributions of phytoplasma diseases and their vectors. In P. Weintraub & P. Jones (Eds.), Phytoplasmas: Genomes, plant hosts and vectors (pp. 309–324). Wallingford, UK: CABI.

    Google Scholar 

  • Freitag, J. H. (1964). Interaction and mutual suppression among three strains of aster yellows virus. Virology, 24, 401–413.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Jara, P., Fraile, A., Canto, T., & García-Arenal, F. (2009). The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. Journal of Virology, 83, 7487–7494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajimorad, M. R., Ahoonmanesh, A., Bahar, M., Kheyrpour, A., & Rezaian, & M. A. (1993). Occurrence and identification of tomato leaf curl geminivirus in Iran. Iranian Journal of Plant Pathology, 29, 112.

    Google Scholar 

  • Horsakova, J., Necasova, J., & Necas, T. (2017). Determination of synergistic interactions between Plum pox virus and 'Candidatus Phytoplasma prunorum' in infected peach trees. Acta Horticuiturae, 1163, 45–52.

    Google Scholar 

  • Jamshidi, E., Jafarpour, B., Rouhani, H., & Salehi, M. (2014). Association of members of clover proliferation (16SrVI) and pigeon pea witches’ broom (16SrIX) phytoplasma groups with tomato big bud disease in Iran. Iranian Journal of Plant Pathology, 50, 77–89.

  • Karvonen, A., Rellstab, C., Louhi, K. R., & Jokela, J. (2012). Synchronous attack is advantageous: Mixed genotype infections lead to higher infection success in trematode parasites. Proceedings of the Royal Society B: Biological Sciences, 279, 171–176.

    PubMed  Google Scholar 

  • Lebsky, V., Hernandez-Gonalez, J., Arguello-Astorga, G., Cardenasconejo, Y., & Poghosyan, A. (2011). Detection of phytoplasmas in mixed infection with begomoviruses: A case study of tomato and pepper in Mexico. Bulletin of Insectology, 64(Suppl), S55–S56.

    Google Scholar 

  • Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 48, 1153–1169.

    CAS  Google Scholar 

  • Liebenberg, A. (2013). Influence of latent apple viruses on Malus sieboldii-derived apple proliferation resistant rootstocks. Heidelberg, Germany, University of Heidelberg, Ph. D. Thesis.

  • Musetti, R., Toppi, L. S., Ermacora, P., & Favali, M. A. (2004). Recovery in apple trees infected with the apple proliferation phytoplasma: An ultrastructure and biochemical study. Phytopathology, 94, 203–208.

    CAS  PubMed  Google Scholar 

  • Musetti, R., Farhan, K. D., Marco, F., Polizzotto, R., Paolacci, A., Ciaffi, M., Ermacora, P., Grisan, S., Santi, S., & Osler, R. (2013). Differentially regulated defence genes in Malus domestica during phytoplasma infection and recovery. European Journal of Plant Pathology, 136, 13–19.

    CAS  Google Scholar 

  • Okuda, S., Prince, J. P., Davis, R. E., Dally, E. L., Lee, I. M., Margone, B., & Kato, S. (1997). Two groups of phytoplasmas from Japan distinguished on the basis of amplification and restriction analysis of 16S rDNA. Plant Disease, 81, 301–305.

    CAS  PubMed  Google Scholar 

  • Omar,  A. F. & Foissac, X. (2012). Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. European Journal of Plant Pathology, 133(2), 353–360.

  • Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S. I., Ugaki, M., & Namba, S. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics, 36, 27–29.

    CAS  PubMed  Google Scholar 

  • Pracros, P., Renaudin, J., Eveillard, S., Mouras, A., & Hernould, M. (2006). Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Molecular Plant-Microbe Interactions, 19, 62–68.

    CAS  PubMed  Google Scholar 

  • Rojas, M. R., Gilbertson, R. L., Russell, D. R., & Maxwell, D. P. (1993). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease, 77, 340–347.

    CAS  Google Scholar 

  • Roossinck, M. J. (2005). Symbiosis versus competition in plant virus evolution. Nature Reviews Microbiology, 3, 917–924.

    CAS  PubMed  Google Scholar 

  • Salar, P., Charenton, C., Foissac, X., & Malembic-Maher, S. (2013). Multiplication kinetics of Flavescence dorée phytoplasma in broad bean. Effect of phytoplasma strain and temperature. European Journal of Plant Pathology, 135(2), 371–381.

  • Salehi, M., & Esmailzadeh Hosseini, S. A. (2016). The first report of a 16SrXII-A phytoplasma associated with tomato big bud disease in Iran. Journal of Plant Pathology, 98(3), 677–697.

  • Salehi, M., & Izadpanah, K. (1995). Big bud of tomato and eggplant in Fars. Proceeding of 12th Iranian Plant Protection Congress, (2-7 September), Karaj, Iran, 169.

  • Salehi, M., Heydarnejad, J., & Izadpanah, K. (2005). Molecular characterization and grouping of 35 phytoplasmas from central and southern provinces of Iran. Iranian Journal of Plant Pathology, 41, 150–154.

    Google Scholar 

  • Salehi, E., Salehi, M., & Masoumi, M. (2016). Biological and molecular characterization of the phytoplasma associated with tomato big bud disease in Zanjan province, Iran. Iranian Journal of Plant Pathology, 52(3), 415–427.

    Google Scholar 

  • Salehi, E., Izadpanah, K., Taghavi, S. M., Hamzezarghani, H., & Afsharifar, A. (2018). Interaction of witches' broom disease of lime phytoplasma and lettuce phyllody phytoplasma in mixed infection of periwinkle plants. Iranian Journal of Plant Pathology, 54, 131–146.

    Google Scholar 

  • Schneider, B., & Seemüller, E. (1994). Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Applied Environmental Microbiology, 60, 3409–3412.

    CAS  PubMed  Google Scholar 

  • Schneider, B., Seemüller, E., Smart, C. D., & Kirkpatrick, B. C. (1995). Phylogenetic classification of plant pathogenic mycoplasma like organisms or phytoplasmas. In S. Razin & J. G. Tully (Eds.), Molecular and diagnostic procedures in mycoplasmology (pp. 369–380). San Diego: Academic Press.

    Google Scholar 

  • Schneider, B., Sule, S., Jelkmann, W., & Seemüller, E. (2014). Suppression of aggressive strains of 'Candidatus Phytoplasma mali' by mild strains in Catharanthus roseus and Nicotiana occidentalis and indication of similar action in apple trees. Phytopathology, 104, 453–461.

    CAS  PubMed  Google Scholar 

  • Seemuller, E., Kiss, E., Sule, S., & Schneider, B. (2010). Multiple infection of apple trees by distinct strains of 'Candidatus Phytoplasma mali' and its pathological relevance. Phytopathology, 100, 863–870.

    PubMed  Google Scholar 

  • Seemuller, E., Kampmann, M., Kiss, E., & Schneider, B. (2011). HfIB gene-based phytopathogenic classification of 'Candidatus Phytoplasma mali' strains and evidence that strain composition determines virulence in multiply infected apple trees. Molecular Plant Microbe Intraction, 24, 1258–1266.

    Google Scholar 

  • Seemuller, E., Sule, S., Kube, M., Jelkmann, W., & Schneider, B. (2013). The AAA+ ATPases and HflB/FtsH proteases of 'Candidatus Phytoplasma mali': Phylogenetic diversity, membrane topology, and relationship to strain virulence. Molecular Plant-Microbe Interactions, 26, 367–376.

    PubMed  Google Scholar 

  • Sertkaya, G., Martini, M., Musetti, R., & Osler, R. (2007). Detection and molecular characterization of phytoplasmas infecting sesame and solanaceous crops in Turkey. Bulletin of Insectology, 60, 141–142.

    Google Scholar 

  • Shahbazi M. (2011). Biotypes of Bemisia tabaci from southern Iran and their efficiency in transmission of tomato leaf curl and tomato yellow leaf curl Begomoviruses. Shiraz, Iran, University of Shiraz, MSc Thesis.

  • Siampour, M., Izadpanah, K., Martini, M., & Salehi, M. (2019). Multilocus sequence analysis of phytoplasma strains of 16SrII group in Iran and their comparison with related strains. Annals of Applied Biology, 175(1), 83–97.

  • Singh, J., Singh, A., Kumar, P., Rani, A., Baranwal, V. K., & Sirohi, A. (2015). First report of mixed infection of phytoplasmas and begomoviruses in eggplant in India. Phytopathogenic Mollicutes, 5(1), S97–S98.

    Google Scholar 

  • Singh, V., Kumar, S., & Lakhanpaul, S. (2018). Differential distribution of phytoplasma during phyllody progression in sesame (Sesamum indicum L.) under field conditions - An important consideration for effective sampling of diseased tissue. Crop Protection, 110, 288–294.

  • Syller, J., & Grupa, A. (2016). Antagonistic within-host interactions between plant viruses: Molecular basis and impact on viral and host fitness. Molecular Plant Pathology, 17(5), 769–782.

    CAS  PubMed  Google Scholar 

  • Tatineni, S., Sagaram, U. S., Gowda, S., Robertson, C. J., Dawson, W. O., Iwanami, T., & Wang, N. (2008). In planta distribution of 'Candidatus Liberibacter asiaticus' as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathology, 98(5), 592–599.

    CAS  PubMed  Google Scholar 

  • White, D. T., Blackall, L. L., Scott, P. T., & Walsh, K. B. (1998). Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in 'Candidatus Phytoplasma australiense' and a new taxon, 'Candidatus Phytoplasma australasia'. International Journal of Systematic Bacteriology, 48, 941–951.

    CAS  PubMed  Google Scholar 

  • Xu, X., Mou, H.-Q., Zhu, S. F., Liao, X. L., & Zhao, W. J. (2013). Detection and characterization of phytoplasma associated with big bud disease of tomato in China. Journal of Plant Pathology, 161, 430–433.

    CAS  Google Scholar 

  • Yan, Z., Pérez-de-Castro, A., Díez, M. J., Hutton, S. F., Visser, R. G. F., Wolters, A. M. A., Bai, Y., & Li, J. (2018). Resistance to Tomato yellow leaf curl virus in tomato germplasm. Frontiers in Plant Science, 9, 1198.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, C., & Zhou, Y. (2012). Strategies for viral cross protection in plants. Methods in Molecular Biology, 894, 69–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Hamed Hasanzadeh Khankahdani, Dr. Majid Siampour, Dr. Habibollah Hamzeh-Zarghani and Dr. Mohsen Amiri for their helpful advices on various technical issues examined in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Faghihi.

Ethics declarations

The manuscript is original and complies with the ethical standards of the journal.

Conflict of interest

All the authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

Electronic supplementary material

ESM 1

(DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi, N., Najafipour, G., Faghihi, M.M. et al. Interaction between ‘Candidatus Phytoplasma australasiae’ and Tomato yellow leaf curl virus in tomato plants. Eur J Plant Pathol 158, 733–744 (2020). https://doi.org/10.1007/s10658-020-02114-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02114-6

Keywords

Navigation