Skip to main content
Log in

Effects of a prothioconazole- and tebuconazole-based fungicide on Aspergillus flavus development under laboratory and field conditions

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Aspergillus flavus is a fungal pathogen of crops including maize and is frequently associated with the accumulation of aflatoxin, which presents a concern for human and animal health. In maize, good agricultural practices can only partially reduce Aspergillus occurrence, and biological control through atoxigenic strains decreases aflatoxin content, but increasing mold decreases kernel quality. The control of Aspergillus infections by chemicals is not authorized in maize, but recently in Italy, some sterol-biosynthesis inhibitors obtained an emergency authorization for use against Fusarium infections. Therefore, it could be interesting to determine if these inhibitors could also be useful against A. flavus. A mixture of prothioconazole and tebuconazole was tested in vitro on toxigenic and atoxigenic strains and on populations with respect to conidial germination, germinal potential and fungal growth. The fungicide mixture inhibited fungal growth, with a higher effect on toxigenic strains than on atoxigenic strains. All considered parameters were significantly reduced for monoconidial strains at doses lower than those recommended for field application for straw cereals; however, under-dosing should be avoided since it increases aflatoxin production. Field trials under natural infection conditions revealed the efficacy of the fungicide treatment on the reduction of both Aspergillus occurrence and aflatoxin accumulation in maize. In a context in which the sustainable use of pesticides can be guaranteed, our findings support the inclusion of azole-based fungicides in a multiple-strategy approach to control Aspergillus infections in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas, H. K., Zablotowicz, R. M., & Locke, M. A. (2004). Spatial variability of Aspergillus flavus soil populations under different crops and corn grain colonization and aflatoxins. Canadian Journal of Botany, 82, 1768–1775.

    Article  CAS  Google Scholar 

  • Abbas, H. K., Zablotowicz, R. M., Bruns, H. A., & Abel, C. A. (2006). Biocontrol of aflatoxin in corn by inoculation with non-aflatoxigenic Aspergillus flavus isolates. Biocontrol Science and Technology, 16, 437–449.

    Article  Google Scholar 

  • Abbas, H. K., Wilkinson, J. R., Zablotowicz, R. M., Accinelli, C., Abel, C. A., Bruns, H. A., & Weaver, M. A. (2009). Ecology of Aspergillus flavus, regulation of aflatoxin production, and management strategies to reduce aflatoxin contamination of corn. Toxin Reviews, 28, 142–153.

    Article  CAS  Google Scholar 

  • Andersen, K. F., Morris, L., Derksen, R. C., Madden, L. V., & Paul, P. A. (2014). Rainfastness of prothioconazole+ tebuconazole for Fusarium head blight and deoxynivalenol management in soft red winter wheat. Plant Disease, 98(10), 1398–1406.

    Article  CAS  PubMed  Google Scholar 

  • Atehnkeng, J., Ojiambo, P. S., Ikotun, T., Sikora, R. A., Cotty, P. J., & Bandyopadhyay, R. (2008). Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize. Food Additives & Contaminants: Part A, 25, 1264–1271.

    Article  CAS  Google Scholar 

  • Atehnkeng, J., Ojiambo, P. S., Cotty, P. J., & Bandyopadhyay, R. (2014). Field efficacy of a mixture of atoxigenic Aspergillus flavus link:Fr vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.). Biological Control, 72, 62–70.

    Article  Google Scholar 

  • Battilani, P., Toscano, P., van der Fels-Klerx, H. J., Moretti, A., Camardo, M. L., Brera, C., Rortais, A., Goumperis, T., & Robinson, T. (2016). Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 6, 24328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger, S., El Chazli, Y., Babu, A. F., & Coste, A. T. (2017). Azole resistance in Aspergillus fumigatus: A consequence of antifungal use in agriculture? Frontiers in Microbiology, 8, 1024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruns, H. A. (2003). Controlling aflatoxin and fumonisin in maize by crop management. Toxin Reviews, 22, 153–173.

    CAS  Google Scholar 

  • Causin, R., Scopel, C., Grendene, A., & Montecchio, L. (2005). An improved method for the detection of Phytophthora cactorum (L.C.) Schröeter in infected plant tissues using SCAR markers. Journal of Plant Pathology, 87, 25–35.

    CAS  Google Scholar 

  • Cotty, P. J., & Jaime-Garcia, R. (2007). Influences of climate on aflatoxin producing fungi and aflatoxin contamination. International Journal of Food Microbiology, 119, 109–115.

    Article  CAS  PubMed  Google Scholar 

  • Criseo, G., Racco, C., & Romeo, O. (2008). High genetic variability in non-aflatoxigenic A. flavus strains by using Quadruplex PCR-based assay. International Journal of Food Microbiology, 125, 341–343.

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo, D. L., Bradley, C. A., Ames, K. A., Willyerd, K. T., Madden, L. V., & Paul, P. A. (2014). Efficacy of fungicide applications during and after anthesis against Fusarium head blight and deoxynivalenol in soft red winter wheat. Plant Disease, 98, 1387–1397.

    Article  CAS  PubMed  Google Scholar 

  • D’Mello, J. P. F., Macdonald, A. M. C., Postel, D., Dijksma, W. T. P., Dujardin, A., & Placinta, C. M. (1998). Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. European Journal of Plant Pathology, 104, 741–751.

    Article  Google Scholar 

  • Dahmen, P., Wachendorff-Neumann, U., Häuser-Hahn, I., Elbe, H.L., Dunkel, R., Suty-Heinze, A. (2009). Synergistic fungicidal active compound combinations containing a carboxamide, an azole, a second azole or a strobilurin. Downloadable at https://patents.google.com/patent/US20090286681A1/en . Accessed 03-05-2018

  • Diener, U. L., Cole, R. J., Sanders, T. H., Payne, G. A., Lee, L. S., & Klich, M. A. (1987). Epidemiology of aflatoxin formation by Aspergillus flavus. Annual Review of Phytopathology, 25(1), 249–270.

    Article  CAS  Google Scholar 

  • Directorate-general for Food Hygiene and Safety and Nutrition. (2016). “Authorization in dispensation of the current regulations for phytosanitary emergency situations for the use on maize of PROSARO reg. n. 13386 containing the active substances prothioconazole and tebuconazole.” In Italian. Downloadable at www.salute.gov.it/portale/temi/documenti/fitosanitari/15_06_2016_est_impiego_in_deroga_PROSARO.pdf . Accessed 03-05-2018

  • Dorner, J. W. (2009). Biological control of aflatoxin contamination in corn using a nontoxigenic strain of Aspergillus flavus. Journal of Food Protection, 72, 801–804.

    Article  CAS  PubMed  Google Scholar 

  • European Parliament and Council. (2009). Directive (EC) 128/2009 establishing a framework for community action to achieve the sustainable use of pesticides. Official Journal of European Union L., 309, 71–86.

    Google Scholar 

  • Fattahi, A., Zaini, F., Kordbacheh, P., Hashemi, S. J., Mahmoudi, M., & Safara, M. (2012). In vitro susceptibility of aflatoxigenic and non-aflatoxigenic Aspergillus flavus strains to conventional antifungal agents. Acta Medica Iranica, 50, 798–804.

    CAS  PubMed  Google Scholar 

  • Formenti, S., Naresh, M., Pietri, A., & Battilani, P. (2012). In vitro impact on growth, fumonisins and aflatoxins production by Fusarium verticillioides and Aspergillus flavus using anti-fungal compounds and a biological control agent. Phytopathologia Mediterranea, 51, 247–256.

    CAS  Google Scholar 

  • Fountain, J. C., Scully, B. T., Ni, X., Kemerait, R. C., Lee, R. D., Chen, Z. Y., & Guo, B. (2014). Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production. Frontiers in Microbiology, 5, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallo, A., Stea, G., Battilani, P., Logrieco, A. F., & Perrone, G. (2012). Molecular characterization of an Aspergillus flavus population isolated from maize during the first outbreak of aflatoxin contamination in Italy. Phytopathologia Mediterranea, 51, 198–206.

    CAS  Google Scholar 

  • Giorni, P., Magan, N., Pietri, A., Bertuzzi, T., & Battilani, P. (2007). Studies on Aspergillus section Flavi isolated from maize in northern Italy. International Journal of Food Microbiology, 113, 330–338.

    Article  CAS  PubMed  Google Scholar 

  • Gisi, U. (1996). Synergistic interaction of fungicides in mixtures. Phytopathologia, 86, 1273–1279.

    CAS  Google Scholar 

  • González, H. H. L., Moltó, G. A., Pacin, A., Resnik, S. L., Zelaya, M. J., Masana, M., & Martínez, E. J. (2008). Trichothecenes and mycoflora in wheat harvested in nine locations in Buenos Aires province, Argentina. Mycopathologia, 165, 105–114.

    Article  CAS  PubMed  Google Scholar 

  • Herrero-Garcia, E., Garzia, A., Cordobés, S., Espeso, E. A., & Ugalde, U. (2011). 8-carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biology, 115, 393–400.

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer. (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Monograph on the evaluation of carcinogenic risks to human, 1–556.

  • Ivic, D., Sever, Z., & Kuzmanovska, B. (2015). In vitro sensitivity of Fusarium graminearum, F. avenaceum and F. verticillioides to carbendazim, tebuconazole, flutriafol, metconazole and prochloraz. Journal Pesticides and Phytomedicine. (Belgrade), 26, 35–42.

    Google Scholar 

  • Jaime-Garcia, R., & Cotty, P. J. (2010). Crop rotation and soil temperature influence the community structure of Aspergillus flavus in soil. Soil Biology and Biochemistry, 42, 1842–1847.

    Article  CAS  Google Scholar 

  • Janse van Rensburg, B., Mc Laren, N. W., Schoeman, A., & Flett, B. C. (2016). The effects of cultivar and prophylactic fungicide spray for leaf diseases on colonisation of maize ears by fumonisin producing Fusarium spp. and fumonisin synthesis in South Africa. Crop Protection, 79, 56–63.

    Article  CAS  Google Scholar 

  • Kebede, H., Abbas, H. K., Fisher, D. K., & Bellaloui, N. (2012). Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. Toxins, 4, 1385–1403.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klich, M. A. (2007). Aspergillus flavus: The major producer of aflatoxin. Molecular Plant Pathology, 8, 713–722.

    Article  CAS  PubMed  Google Scholar 

  • Knezevic, A. (2008). Overlapping confidence intervals and statistical significance. StatNews: Cornell University Statistical Consulting Unit. Downloadable at www.cscu.cornell.edu/news/statnews/stnews73.pdf . Accessed 03-05-2018

  • Lipovetsky, S. (2010). Double logistic curve in regression modeling. Journal of Applied Statistics, 37, 1785–1793.

    Article  Google Scholar 

  • Lyn, M. E., Abbas, H. K., Zablotowicz, R. M., & Johnson, B. J. (2009). Delivery systems for biological control agents to manage aflatoxin contamination of pre-harvest maize. Food Additives & Contaminants: Part A, 26, 381–387.

    Article  CAS  Google Scholar 

  • Manoza, F. S., Mushongi, A. A., Harvey, J., Wainaina, J., Wanjuki, I., Ngeno, R., Darnell, R., Gnonlonfin, B. G. J., & Massomo, S. M. S. (2017). Potential of using host plant resistance, nitrogen and phosphorus fertilizers for reduction of Aspergillus flavus colonization and aflatoxin accumulation in maize in Tanzania. Crop Protection, 93, 98–105.

    Article  CAS  Google Scholar 

  • Marín, P., de Ory, A., Cruz, A., Magan, N., & González-Jaén, M. T. (2013). Potential effects of environmental conditions on the efficiency of the antifungal tebuconazole controlling Fusarium verticillioides and Fusarium proliferatum growth rate and fumonisin biosynthesis. International Journal of Food Microbiology, 165(3), 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Mateo, E. M., Gómez, J. V., Gimeno-Adelantado, J. V., Romera, D., Mateo-Castro, R., & Jiménez, M. (2017). Assessment of azole fungicides as a tool to control growth of Aspergillus flavus and aflatoxin B1 and B2 production in maize. Food Additives & Contaminants: Part A, 34, 1039–1051.

    Article  CAS  Google Scholar 

  • Mauro, A., Battilani, P., Callicott, K. A., Giorni, P., Pietri, A., & Cotty, P. J. (2013). Structure of an Aspergillus flavus population from maize kernels in northern Italy. International Journal of Food Microbiology, 162, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Medina, Á., Mateo, R., Valle-Algarra, F. M., Mateo, E. M., & Jiménez, M. (2007). Effect of carbendazim and physicochemical factors on the growth and ochratoxin a production of Aspergillus carbonarius isolated from grapes. International Journal of Food Microbiology, 119, 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Mohale, S., Medina, A., & Magan, N. (2013). Effect of environmental factors on in vitro and in situ interactions between atoxigenic and toxigenic A. flavus strains and control of aflatoxin contamination of maize. Biocontrol Science and Technology, 23, 776–793.

    Article  Google Scholar 

  • R Core Team, (2017). A language and environment for statistical computing; Vienna : R Foundation for Statistical Computing.

  • Raper, K.B., Fennell, D.I. (1965). The genus Aspergillus. ed. The Williams and Wilkins Company, pp. 357–404.

  • Reverberi, M., Punelli, M., Smith, C. A., Zjalic, S., Scarpari, M., Scala, V., Cardinali, G., Aspite, N., Pinzari, F., Payne, G. A., Fabbri, A. A., & Fanelli, C. (2012). How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus. PLoS One, 7, e48097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini, A., Ritieni, A. (2013). Aflatoxins: Risk, exposure and remediation, in: Aflatoxins - recent advances and future Prospects. ed. Mehdi Razzaghi-Abyaneh, InTech, London - United Kingdom, pp. 143–265.

  • Santos, L., Marín, S., Sanchis, V., & Ramos, A. J. (2011). In vitro effect of some fungicides on growth and aflatoxins production by Aspergillus flavus isolated from Capsicum powder. Food Additives & Contaminants: Part A, 28, 98–106.

    Article  CAS  Google Scholar 

  • Sardiñas, N., Vázquez, C., Gil-Serna, J., González-Jaén, M. T., & Patiño, B. (2010). Specific detection of Aspergillus parasiticus in wheat flour using a highly sensitive PCR assay. Food Additives & Contaminants: Part A, 27, 853–858.

    Article  CAS  Google Scholar 

  • Scarpino, V., Reyneri, A., Sulyok, M., Krska, R., & Blandino, M. (2015). Effect of fungicide application to control Fusarium head blight and 20 Fusarium and Alternaria mycotoxins in winter wheat (Triticum aestivum L.). World Mycotoxin Journal, 1–12.

  • Severns, D. E., Clements, M. J., Lambert, R. J., & White, D. G. (2003). Comparison of Aspergillus ear rot and aflatoxin contamination in grain of high-oil and normal-oil corn hybrids. Journal of Food Protection, 66, 637–643.

    Article  PubMed  Google Scholar 

  • Tuite, J., (1969). Plant pathological methods. Fungi and bacteria. Burgess Publishing Company 1–239 pp.

  • US Food and Drug Administration. (2010). Most probable number from serial dilution. Appendix 2. BAM http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm109656.htm . Accessed 03-05-2018

  • van den Bosch, F., Paveley, N., Shaw, M., Hobbelen, P., & Oliver, R. (2011). The dose rate debate: Does the risk of fungicide resistance increase or decrease with dose? Plant Pathology, 60(4), 597–606.

    Article  CAS  Google Scholar 

  • van den Bossche, H., Lauwers, W., Willemsens, G., Marichal, P., Cornelissen, F., & Cools, W. (1984). Molecular basis for the antimycotic and antibacterial activity of N-substituted imidazoles and triazoles: The inhibition of isoprenoid biosynthesis. Pesticide Science, 15, 188–198.

    Article  Google Scholar 

  • Weaver, M. A., Abbas, H. K., Falconer, L. L., Allen, T. W., Pringle, H. C., & Sciumbato, G. L. (2015). Biological control of aflatoxin is effective and economical in Mississippi field trials. Crop Protection, 69, 52–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Causin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Animal studies

This study does not include any studies with human participants or animals (vertebrates) performed by any of the authors.

Informed consent

Informed consent was obtained from all of the individual participants included in the study.

Electronic supplementary material

ESM 1

(XLSX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrigo, D., Mondin, M., Scopel, C. et al. Effects of a prothioconazole- and tebuconazole-based fungicide on Aspergillus flavus development under laboratory and field conditions. Eur J Plant Pathol 155, 151–161 (2019). https://doi.org/10.1007/s10658-019-01757-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01757-4

Keywords

Navigation