Skip to main content
Log in

Phenolic content as an indicator of tolerance of cowpea seedlings to Sclerotium rolfsii

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The role of phenolics in plant tolerance to pathogen infection is well documented. The objective of the present preliminary investigation was to study phenolic metabolites involved in the tolerance or susceptibility of cowpea (Vigna unguiculata Walp.) cultivars to Sclerotium rolfsii Sacc. and to use their presence as a possible screening tool. Total, free acid, ester-bound and cell wall-bound phenolics of 10 cowpea cultivars were quantified. In healthy seedlings, the tolerant cultivars displayed the higher phenol content than the susceptible cultivars. In S. rolfsii infected seedlings, the highest increase was found from 48 h after inoculation. The net effect of inoculation was a 630% increase in total phenolics (soluble and insoluble) in the stem of tolerant cultivars while the total phenolic content increased only by 212% in the stems of susceptible cultivars. Although, no significant difference (P = 0.05) was detected among cultivars, in terms of free acid phenolics, the amount of ester-bound and cell wall-bound phenolics significantly increased, therefore demonstrating a similar trend to the one observed for the total phenolic content. These preliminary results showed that the presence of phenolics before and after S. rolfsii infection may be used as a rapid screening method for detection of tolerance to S. rolfsii damping-off and stem rot of cowpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Adandonon, A., Aveling, T. A. S., Labuschagne, N., & Ahohuendo, B. C. (2005a). Etiology of and effect of environmental factors on damping-off and stem rot of cowpea in Benin. Phytoparasitica, 33, 65–72.

    Article  Google Scholar 

  • Adandonon, A., Aveling, T. A. S., & Tamo, M. (2005b). A new laboratory technique for rapid screening of cowpea cultivars for resistance to damping-off and stem rot caused by Sclerotium rolfsii. International Edible Legume Conference in conjunction with IV World Cowpea Congress, 17–21 April 2005, Durban, South Africa.

  • Aveling, T. A. S., & Powell, A. A. (2005). Effect of seed storage and seed coat pigmentation on susceptibility of cowpeas to pre-emergence damping-off. Seed Science and Technology, 33(2), 461–470.

    Article  Google Scholar 

  • Bailey, J. A., & Mansfield, J. W. (1982). Phytoalexins. New York: Wiley.

    Google Scholar 

  • Basha, E., Friedrich, K. L., & Vierling, E. (2006). The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. Journal of Biological Chemistry, 281, 39943–39952.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. Q., Belanger, R. R., Benhamou, N., & Paulitz, T. C. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56, 13–23.

    Article  CAS  Google Scholar 

  • Du Plooy, W., Regnier, T., & Combrinck, S. (2009). Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biology and Technology, 53, 117–122.

    Article  CAS  Google Scholar 

  • Fry, S. C. (1979). Phenolic components of the primary cell wall and their possible role in the hormonal regulation of growth. Planta, 146, 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Harborne, J. B. (1988). Introduction to ecological biochemistry. Third edition. Academic Press, London.

  • Jain, A., Singh, S., Sarma, B. K., & Singh, H. B. (2011). Microbial consortium–mediated reprogramming of defense network in pea to enhance tolerance against Sclerotinia sclerotiorum. Journal of Applied Microbiology, 112, 537–550.

    Article  Google Scholar 

  • Kritzinger, Q., Aveling, T. A. S., & Marasas, W. F. O. (2002). Effect of essential plant oils on storage fungi, germination and emergence of cowpea seeds. Seed Science and Technology, 30(3), 609–619.

    Google Scholar 

  • Kuć, J. (1995). Phytoalexins, stress metabolic, and disease resistance in plants. Annual Review of Phytopathology, 33, 275–297.

    Article  PubMed  Google Scholar 

  • Maurya, S., Singh, R., Singh, D. P., Singh, H. B., Srivastava, J. S., & Singh, U. P. (2007). Phenolic compounds of Sorghum vulgare in response to Sclerotium rolfsii infection. Journal of Plant Interaction, 2, 25–29.

    Article  CAS  Google Scholar 

  • Mohammadi, M., & Kazemi, H. (2002). Changes in peroxidase and polyphenol activity in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sciences, 162, 491–498.

    Article  CAS  Google Scholar 

  • Morrissey, J. P., & Osbourn, A. E. (1999). Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiology and Molecular Biology Reviews, 63(3), 708–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi, S., Dutta, S., Mondal, A., Adhikari, A., Nath, R., Chattopadhaya, A., & Chaudhuri, S. (2013). Biochemical responses during the pathogenesis of Sclerotium rolfsii on cowpea. African Journal Biotechnology, 12, 3968–3977.

    CAS  Google Scholar 

  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    Article  CAS  Google Scholar 

  • Pakela, Y. P. (2003). Interaction between Colletotrichum dematium and cowpea. PhD thesis, University of Pretoria, Pretoria.

  • PEDUNE-BENIN. Projet Protection Ecologiquement Durable du Niébé, volet Bénin. (1995). Enquêtes exploratoire et diagnostique sur la situation du niébé au Benin. Rapport d’enquête. (ecologically sustainable cowpea plant protection in Benin. Exploratory and diagnostic surveys of cowpea production in Benin. Survey reports). INRAB, Cotonou.

  • Regnier, T. (1994). Les composés phénoliques du blé dur (Triticum turgidum L. var. durum): Variations au cours du développement et de la maturation du grain, relations avec l’apparition de la moucheture. Thèse de Doctorat d’Etat. Université Montpellier II, France.

  • Saraswathi, M., & Reddy, M. N. (2012). Phenolic acids associated with Sclerotium rolfsii in groundnut (Arachis hypogaea L.) during pathogenesis. International Journal of Plant Pathology, 3, 82–88.

    Article  Google Scholar 

  • Sarma, B. K., Singh, D. P., Mehta, S., Singh, H. B., & Singh, U. P. (2002). Plant growth-promoting rhizobacteria-elicited alterations in phenolic profile of chickpea (Cicer arietinum) infected by Sclerotium rolfsii. Journal of Phytopathology, 150, 277–282.

    Article  CAS  Google Scholar 

  • Singh, A., Jain, A., Sarma, B. K., Upadhyaya, R. S., & Singh, H. B. (2014). Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiological Research, 169, 353–360.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Foundation, South Africa, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Appolinaire Adandonon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adandonon, A., Regnier, T. & Aveling, T.A.S. Phenolic content as an indicator of tolerance of cowpea seedlings to Sclerotium rolfsii . Eur J Plant Pathol 149, 245–251 (2017). https://doi.org/10.1007/s10658-017-1178-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1178-9

Keywords

Navigation