Skip to main content

Advertisement

Log in

Improved assessment of mycelial growth stimulation by low doses of mefenoxam in plant pathogenic Globisporangium species

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Globisporangium Uzuhashi, Tojo & Kakish. (syn. Pythium Pringsheim) species cause many plant diseases, including Pythium damping-off, leaf and fruit blights, and root rots. Fungicide resistant isolates are selected by repeated use of a single active ingredient on infected crops without rotation. Previous studies demonstrated increased pathogenicity and radial growth in a mefenoxam resistant isolate of Pythium aphanidermatum when exposed to sub-lethal doses of fungicides and ethanol. In those studies, reproducibility of in vitro assays was difficult to achieve due to large variations among trials. This study aimed to examine two protocols for improved reproducibility during the assessment of biphasic dose-responses in mefenoxam-resistant isolates of Globisporangium ultimum and G. irregulare. Two different growth related endpoints, total growth area and total dry mass weight, were assessed. Assays were conducted using ten concentrations of mefenoxam ranging from 0.01 to 1,000 μg/ml. Statistically-significant stimulatory effects were observed in the two Globisporangium species using the two growth related endpoints. Because of its better reproducibility, mycelial growth area is recommended as an endpoint for future studies of chemical hormesis on growth of Globisporangium spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Audenaert, K., Callewaert, E., Höfte, M., De Saeger, S., & Haesaert, G. (2011). Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. Plant Breeding and Seed Science, 63(10), 3–21.

    Google Scholar 

  • Baldauf, S. L., Roger, A., Wenk-Siefert, I., & Doolittle, W. F. (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science, 290(5493), 972–977.

    Article  CAS  PubMed  Google Scholar 

  • Barcelo, J., & Poschenrieder, C. (2002). Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environmental and Experimental Botany, 48(1), 75–92.

    Article  CAS  Google Scholar 

  • Belz, R. G., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707.

    Article  CAS  PubMed  Google Scholar 

  • Brain, P., & Cousens, R. (1989). An equation to describe dose responses where there is stimulation of growth at low doses. Weed Research, 29(2), 93–96.

    Article  Google Scholar 

  • Calabrese, E. J. (2013). Hormetic mechanisms. Critical Reviews in Toxicology, 43(7), 580–606.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, E. J., & Baldwin, L. A. (1997). A quantitatively‐based methodology for the evaluation of chemical hormesis. Human and Ecological Risk Assessment, 3(4), 545–554.

    Article  Google Scholar 

  • Calabrese, E. J., & Baldwin, L. A. (2001). Hormesis: a generalizable and unifying hypothesis. Critical Reviews in Toxicology, 31(4–5), 353–424.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, E. J., & Baldwin, L. A. (2002). Defining hormesis. Human & Experimental Toxicology, 21(2), 91–97.

    Article  CAS  Google Scholar 

  • Calabrese, E. J., & Blain, R. (2005). The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicology and Applied Pharmacology, 202(3), 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, E. J., & Howe, K. J. (1976). Stimulation of growth of peppermint (Mentha piperita) by phosfon, a growth retardant. Physiologia Plantarum, 37(2), 163–165.

    Article  CAS  Google Scholar 

  • Chen, S. K., Edwards, C. A., & Subler, S. (2001). Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology and Biochemistry, 33(14), 1971–1980.

    Article  CAS  Google Scholar 

  • Crump, K. (2001). Evaluating the evidence for hormesis: a statistical perspective. Critical Reviews in Toxicology, 31(4–5), 669–679.

    Article  CAS  PubMed  Google Scholar 

  • Deng, C., Zhao, Q., & Shukla, R. (2000). Detecting hormesis using a non-parametric rank test. Human & Experimental Toxicology, 19(12), 703–708.

    Article  CAS  Google Scholar 

  • Flores, F. J., & Garzon, C. D. (2013). Detection and assessment of chemical hormesis on the radial growth in vitro of oomycetes and fungal plant pathogens. Dose-Response, 11(3), 361–373.

    Article  CAS  Google Scholar 

  • Gabliks, J., Bantug-Jurilla, M., & Friedman, L. (1967). Responses of cell cultures to insecticides. IV. Relative toxicity of several organophosphates in mouse cell cultures. Experimental Biology and Medicine, 125(3), 1002–1005.

    Article  CAS  Google Scholar 

  • Garzon, C. D., & Flores, F. J. (2013). Hormesis: Biphasic dose-responses to fungicides in plant pathogens and their potential threat to agriculture. In M. Nita (Ed.), Fungicides-showcases of integrated plant disease management from around the world (pp. 311–328). Rijeka: InTech.

    Google Scholar 

  • Garzon, C. D., Molineros, J. E., Yánez, J. M., Flores, F. J., Jiménez-Gasco, M. D. M., & Moorman, G. W. (2011). Sublethal doses of mefenoxam enhance Pythium damping-off of geranium. Plant Disease, 95(10), 1233–1238.

    Article  CAS  Google Scholar 

  • Gómez-Icazbalceta, G., Huerta, L., Soto-Ramirez, L., & Larralde, C. (2007). Extracellular HIV-1 Nef protein modulates lytic activity and proliferation of human CD8+ T lymphocytes. Cellular Immunology, 250(1–2), 85–90.

    Article  PubMed  Google Scholar 

  • Guedes, R. N. C., & Cutler, G. C. (2014). Insecticide‐induced hormesis and arthropod pest management. Pest Management Science, 70(5), 690–697.

    Article  CAS  PubMed  Google Scholar 

  • Guedes, N., Tolledo, J., Corrêa, A., & Guedes, R. (2010). Insecticide‐induced hormesis in an insecticide‐resistant strain of the maize weevil, Sitophilus zeamais. Journal of Applied Entomology, 134(2), 142–148.

    Article  CAS  Google Scholar 

  • Hayes, D. (2007). Nutritional hormesis. European Journal of Clinical Nutrition, 61(2), 147–519.

    Article  CAS  PubMed  Google Scholar 

  • Horner, N. R., Grenville-Briggs, L. J., & Van West, P. (2012). The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation. Fungal Biology, 116(1), 24–41.

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss, M. (1923). Studies on salt action: VI. The stimulating and inhibitive effect of certain cations upon bacterial growth. Journal of Bacteriology, 8(2), 141–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers, S., & Martin, S. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease, 70(11), 1038–1043.

    Article  Google Scholar 

  • Jensen, G. H. (1907). Toxic limits and stimulation effects of some salts and poisons on wheat. Botanical Gazette, 43(1), 11–44.

    Article  CAS  Google Scholar 

  • Kushida, M., Sukata, T., Uwagawa, S., Ozaki, K., Kinoshita, A., Wanibuchi, H., Morimura, K., Okuno, Y., & Fukushima, S. (2005). Low dose DDT inhibition of hepatocarcinogenesis initiated by diethylnitrosamine in male rats: possible mechanisms. Toxicology and Applied Pharmacology, 208(3), 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Levy, S. B. (1998). The challenge of antibiotic resistance. Scientific American, 278(3), 32–39.

    Article  Google Scholar 

  • Malarczyk, E., Pazdzioch-Czochra, M., Grąz, M., Kochmańska-Rdest, J., & Jarosz-Wilkołazka, A. (2011). Nonlinear changes in the activity of the oxygen-dependent demethylase system in Rhodococcus erythropolis cells in the presence of low and very low doses of formaldehyde. Nonlinear Biomedical Physics. doi:10.1186/1753-4631-5-9.

    PubMed  PubMed Central  Google Scholar 

  • Mattson, M. P. (2008). Dietary factors, hormesis and health. Ageing Research Reviews, 7(1), 43–48.

    Article  PubMed  Google Scholar 

  • Mattson, M. P., & Calabrese, E. J. (2009). Hormesis: a revolution in biology, toxicology and medicine. Philadelphia: Springer Science & Business Media.

    Google Scholar 

  • Migliore, L., Cozzolino, S., & Fiori, M. (2000). Phytotoxicity to and uptake of flumequine used in intensive aquaculture on the aquatic weed, Lythrum salicaria L. Chemosphere, 40(7), 741–750.

    Article  CAS  PubMed  Google Scholar 

  • Migliore, L., Cozzolino, S., & Fiori, M. (2003). Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere, 52(7), 1233–1244.

    Article  CAS  PubMed  Google Scholar 

  • Migliore, L., Rotini, A., Cerioli, N. L., Cozzolino, S., & Fiori, M. (2010). Phytotoxic antibiotic sulfadimethoxine elicits a complex hormetic response in the weed Lythrum salicaria L. Dose-Response, 8(4), 414–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, W., Green, C., & Kitchen, H. (1945). Biphasic action of penicillin and other sulphonamide similarity. Nature, 155(3929), 210–211.

    Article  CAS  Google Scholar 

  • Moorman, G., Kang, S., Geiser, D., & Kim, S. (2002). Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania. Plant Disease, 86(11), 1227–1231.

    Article  Google Scholar 

  • Morales-Fernández, L., Fernández-Crehuet, M., Espigares, M., Moreno, E., & Espigares, E. (2014). Study of the hormetic effect of disinfectants chlorhexidine, povidone iodine and benzalkonium chloride. European Journal of Clinical Microbiology & Infectious Diseases, 33(1), 103–109.

    Article  Google Scholar 

  • Nickell, L. G. (1952). Stimulation of plant growth by antibiotics. Experimental Biology and Medicine, 80(4), 615–617.

    Article  CAS  Google Scholar 

  • Sanders, P. (1984). Failure of metalaxyl to control Pythium blight on turfgrass in Pennsylvania. Plant Diseases, 68(9), 776–777.

    Article  Google Scholar 

  • Schabenberger, O., Tharp, B. E., Kells, J. J., & Penner, D. (1999). Statistical tests for hormesis and effective dosages in herbicide dose response. Agronomy Journal, 91(4), 713–721.

    Article  CAS  Google Scholar 

  • Southam, C. M., & Ehrlich, J. (1943). Effects of extract of western red-cedar heartwood on certain wooddecaying fungi in culture. Phytopathology, 33(6), 517–524.

    Google Scholar 

  • Stebbing, A. (1982). Hormesis—the stimulation of growth by low levels of inhibitors. Science of the Total Environment, 22(3), 213–234.

    Article  CAS  PubMed  Google Scholar 

  • Stebbing, A. (1998). A theory for growth hormesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 403(1–2), 249–258.

    Article  CAS  PubMed  Google Scholar 

  • Szabadi, E. (1977). A model of two functionally antagonistic receptor populations activated by the same agonist. Journal of Theoretical Biology, 69(1), 101–12.

    Article  CAS  PubMed  Google Scholar 

  • Uzuhashi, S., Tojo, M., & Kakishima, M. (2010). Phylogeny of the genus Pythium and description of new genera. Mycoscience, 51(5), 337–365.

    Article  Google Scholar 

  • Velini, E. D., Alves, E., Godoy, M. C., Meschede, D. K., Souza, R. T., & Duke, S. O. (2008). Glyphosate applied at low doses can stimulate plant growth. Pest Management Science, 64(4), 489–496.

    Article  CAS  PubMed  Google Scholar 

  • Woznica, A., Nowak, A., Ziemski, P., Kwasniewski, M., & Bernas, T. (2013). Stimulatory effect of xenobiotics on oxidative electron transport of chemolithotrophic nitrifying bacteria used as biosensing element. PloS One. doi:10.1371/journal.pone.0053484.

    PubMed  PubMed Central  Google Scholar 

  • Xin, F., Du, C., Lan, G., & Wu, Z. (2013). Synthesis, characterization, and agricultural biological activities of 5-fluoro-2-hydroxy butyrophenone. Journal of Chemistry. doi:10.1155/2013/895892.

    Google Scholar 

  • Zhou, F., Liang, H. J., Di, Y. L., You, H., & Zhu, F. X. (2014). Stimulatory effects of sublethal doses of dimethachlon on Sclerotinia sclerotiorum. Plant Disease, 98(10), 1364–1370.

    Article  CAS  Google Scholar 

  • Zuo, Y., Peng, C., Liang, Y., Ma, K. Y., Chan, H. Y. E., Huang, Y., & Chen, Z. Y. (2013). Sesamin extends the mean lifespan of fruit flies. Biogerontology, 14(2), 107–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Gary Moorman, at the Pennsylvania State University, for providing the Pythium isolates included in this study.

Funding

This work was supported by the Oklahoma Agricultural Experiment Station, project numbers OKL02901 and OKL02859.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla D. Garzon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S., Flores, F.J., Molineros, J.E. et al. Improved assessment of mycelial growth stimulation by low doses of mefenoxam in plant pathogenic Globisporangium species. Eur J Plant Pathol 147, 477–487 (2017). https://doi.org/10.1007/s10658-016-1016-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1016-5

Keywords

Navigation