Skip to main content
Log in

Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp.

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The literature on the entomopathogenic fungi in the genus Cordyceps describing its use in the agricultural area as a biocontrol agent is limited. In this study, a total of 47 isolates of entomopathogenic fungi were isolated from dead cicada nymphs obtained from various locations in the northeast of Thailand. These isolates were primarily screened for antagonistic activity to inhibit the mycelial growth of one isolate of Colletotrichum gloeosporioides and one isolate of C. capsici. The screen revealed that five isolates of entomopathogenic fungi showed good inhibitory effects on the fungal mycelial growth and were chosen for further confirmation of their antagonistic effects against five isolates of C. gloeosporioides and five isolates of C. capsici by the dual culture method. After investigation, the isolate Cod-NB1302 had the best inhibitory effect. Moreover, the mycelium extract and culture filtrate of isolate Cod-NB1302 also had inhibitory effects on the mycelial growth and conidial germination of all isolates of plant pathogenic Colletotrichum spp. under in vitro conditions. Interestingly, the mycelium extract and culture filtrate effectively reduced the size of the disease lesion and disease severity on chili fruits after inoculation with the plant pathogenic fungi. However, the mycelium extract exhibited greater antifungal activity than the culture filtrate. Finally, the isolate Cod-NB1302 was identified as Ophiocordyceps sobolifera based on the sequence of three ribosomal nuclear DNA genes and two protein-coding genes. These findings suggest that the isolate Cod-NB1302 is a potential candidate, with antagonistic activity, for use as a source of antifungal agents to control anthracnose disease caused by the plant pathogenic Colletotrichum spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvindia, D. G., & Natsuaki, K. T. (2008). Evaluation of fungal epiphytes isolated from banana fruit surfaces for biocontrol of banana crown rot disease. Crop Protection, 27, 1200–1207.

    Article  Google Scholar 

  • Asthana, A., Dixit, K., Tripathi, N. N., & Dixit, S. N. (1989). Efficacy of ocimum oil against fungi attacking chili seed during storage. Tropical Science, 49, 15–20.

    Google Scholar 

  • Bae, Y. S., & Knudsen, G. R. (2005). Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum. Biological Control, 32, 236–242.

    Article  Google Scholar 

  • Castlebury, L. A., Rossman, A. Y., Sung, G. H., Hyten, A. S., & Spatafora, J. W. (2004). Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research, 108(8), 864–872.

    Article  CAS  PubMed  Google Scholar 

  • Cha, S. H., Kim, J. C., Lim, J. S., Yoon, C. S., Koh, J. H., Chang, H. I., et al. (2006). Morphological characteristics of Cordyceps sinensis 16 and production of mycelia and exo-biopolymer from molasses in submerged culture. Journal of Industrial and Engineering Chemistry, 12(1), 115–120.

    CAS  Google Scholar 

  • Chen, J. T., & Huang, J. W. (2010). Antimicrobial activity of edible mushroom culture filtrates on plant pathogens. Plant Pathology Bulletin, 19, 261–270.

    Google Scholar 

  • Currie, C. R., Wong, B., Stuart, A. E., Schultz, T. R., Rehner, S. A., Mueller, U. G., et al. (2003). Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science, 299, 386–388.

    Article  CAS  PubMed  Google Scholar 

  • Ekefan, E. J., Jama, A., & Gowen, S. R. (2009). Potential of Trichoderma harzianum isolates in biocontrol of Colletotrichum capsici causing anthracnose of pepper (Capsicum spp.) in Nigeria. Journal of Applied Biosciences, 20, 1138–1145.

    Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Hartman, G.L., & Wang, T.C. (1992). Characteristics of two Colletotrichum species and evaluation of resistance to anthracnose in pepper. Proc. 3rd Intl. Conf. Plant Protection in the Tropics, vol 6. Malaysian Plant Protection Society, Kuala Lumpur, pp 202–205.

  • Hong, J. K., & Hwang, B. K. (1998). Influence of inoculum density, wetness duration, plant age, inoculation method, and cultivar resistance on infection of pepper plants by Colletotrichum coccodes. Plant Disease, 82, 1079–1083.

    Article  Google Scholar 

  • Huang, L., Li, Q., Chen, Y., Wang, X., & Zhou, X. (2009). Determination and analysis of cordycepin and adenosine in the products of Cordyceps spp. African Journal of Microbiology Research, 3(12), 957–961.

    CAS  Google Scholar 

  • Imtiaj, A., & Lee, T. S. (2007). Screening of antibacterial and antifungal activities from Korean wild mushrooms. World Journal of Agricultural Science, 3(3), 316–321.

    Google Scholar 

  • Kim, K. D., Oh, B. J., & Yang, J. (1999). Differential interactions of a Colletotrichum gloeosporioides isolate with green and red pepper fruits. Phytoparasitica, 27(2), 97–106.

    Article  Google Scholar 

  • Korsten, L., De-Jager, E. S., De-Villers, E. E., Lourens, A., Kotzé, J. M., & Wehner, F. C. (1995). Evaluation of bacterial epiphytes isolated from avocado leaf and fruit surfaces for biocontrol of avocado postharvest diseases. Plant Disease, 79, 1149–1156.

    Article  Google Scholar 

  • Kumer, A. S., Eswara Reddy, N. P., Hariprasad Reddy, K., & Charitha Devi, M. (2007). Evaluation of fungicidal resistance among Colletotrichum gloeosporioides isolates causing mango anthracnose in agri export zone of Andhra Pradesh, India. Plant Pathology Bulletin, 16, 157–160.

    Google Scholar 

  • Kwak, Y. K., Kim, I. S., Cho, M. C., Lee, S. C., & Kim, S. (2012). Growth inhibition effect of environment-friendly farm materials in Colletotrichum acutatum in vitro. Journal of Bio-Environment Control, 21, 127–133.

    Google Scholar 

  • Lee, K. H., & Min, T. J. (2003). Purification and characterization of a chitinase in culture media of Cordyceps militaris (L.) link. The Korean Journal of Mycology, 31, 168–174.

    Article  Google Scholar 

  • Montri, P., Taylor, P. W. J., & Mongkolporn, O. (2009). Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Disease, 93, 17–20.

    Article  Google Scholar 

  • Oanh, L. T. K., Korpraditskul, V., & Rattanakreetakul, C. (2004). A pathogenicity of anthracnose fungus. Colletotrichum capsici on various Thai chilli varieties. Kasetsart Journal (Nat. Sci.), 38, 103–108.

    Google Scholar 

  • Ownley, B. H., Gwinn, K. D., & Vega, F. E. (2010). Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 55, 113–128.

    Article  Google Scholar 

  • Pakdeevaraporn, P., Wasee, S., Taylor, P. W. J., & Mongkolporn, O. (2005). Inheritance of resistance to anthracnose caused by Colletotrichum capsici in Capsicum. Plant Breeding, 124(2), 206–208.

    Article  Google Scholar 

  • Poonpolgul, S., & Kumphai, S. (2007). Chilli pepper anthracnose in Thailand. Country report. In D. G. Oh & K. T. Kim (Eds.), Abstracts of the first international symposium on chilli anthracnose (p. 23). National Horticultural Research Institute: Rural Development of Administration, Republic of Korea.

    Google Scholar 

  • Ratanacherdchai, K., Wang, H. K., Lin, F. C., & Soytong, K. (2007). RAPD analysis of Colletotrichum species causing chilli anthracnose disease in Thailand. Journal of Agricultural Technology, 3(2), 211–219.

    Google Scholar 

  • Sangchote, S., Pongpisutta, R., Kongsamai, B., Taweechai, N., & Sukprakarn, S. (1998). Resistance of pepper to Colletotrichum spp. In The first announcement and international conference on Periurban vegetable production in the 21st century, 29th September-1st October 1998. Bangkok: Kasetsart University.

    Google Scholar 

  • Sangdee, A., Sachan, S., & Khankhum, S. (2011). Morphological, pathological and molecular variability of Colletotrichum capsici causing anthracnose of chilli in the north-east of Thailand. African Journal of Microbiology Research, 5(25), 4368–4372.

    CAS  Google Scholar 

  • Sangdee, A., & Sangdee, K. (2013). Isolation, identification, culture and production of adenosine and cordycepin from cicada larva infected with entomopathogenic fungi in Thailand. African Journal of Microbiology Research, 7(2), 137–146.

    Article  CAS  Google Scholar 

  • Sangdee, K., Nakbanpote, W., & Sangdee, A. (2015). Isolation of the entomopathogenic fungal strain Cod-MK1201 from a cicada nymph and assessment of its antibacterial activities. International journal of Medicinal Mushrooms, 17(1), 51–63.

    Article  PubMed  Google Scholar 

  • Sharma, P. N., Kaur, M., Sharma, O. P., Sharma, P., & Pathania, A. (2005). Morphological, pathological and molecular variability in Colletotrichum capsici, the cause of fruit rot of chilies in the subtropical region of North-Western India. Journal of Phytopathology, 153, 232–237.

    Article  Google Scholar 

  • Shin, H. J., Xu, T., Zhang, C. L., & Chen, Z. J. (2000). The comparative study of capsicum anthracnose pathogens from Korea with that of China. Journal of Zhejiang University Agriculture and Life Sciences, 26, 629–634.

    Google Scholar 

  • Suay, I., Arenal, F., Asensio, F. J., Basilio, A., Cabello, M. A., Díez, M. T., et al. (2000). Screening of basidiomycetes for antimicrobial activities. Antonie Van Leeuwenhoek, 78, 129–139.

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher, G., Peterson, D., Filipski, A. & Kumar S (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. doi:10.1093/molbev/mst197.

  • Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W. J., & Hyde, K. D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University SCIENCE B, 9(10), 764–778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuli, H.S., Sandhu, S.S. & Sharma, A.K. (2014). Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech, 4, 1–12.

  • Vesely, D., & Koubova, D. (1994). In vitro effect of the entomopathogenic fungi Beauveria bassiana (Bals.-Criv.) Vuill. And B. brongniartii (Sacc.) Petch on Phytopathogenic fungi. Ochrana Rostlin, 30, 113–120.

    Google Scholar 

  • Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238–4246.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X. L., Liu, G. Q., Zhu, C. Y., Zhou, G. Y., & Kuang, S. M. (2011). Enhanced production of mycelial biomass and extracellular polysaccharides in caterpillar-shaped medicinal mushroom Cordyceps sinensis CS001 by the addition of palmitic acid. Journal of Medicinal Plants Research, 5, 2873–2878.

    CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, Pp. 315–322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. New York: Academic Press, Inc..

    Book  Google Scholar 

  • Wong, J. H., Ng, T. B., Wang, H., Wing Sze, S. C., Zhang, K. Y., Li, Q., et al. (2011). Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine, 18, 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Wu, W. S., Liu, S. D., Chung, Y. C., & Tschen, S. (1986). Hyperparasitic relationship between antagonists and Rhizoctonia solani. Plant Protection Bulletin, 28, 91–100.

    Google Scholar 

  • Zhu, J. S., Halpern, G. M., & Jones, K. (1998). The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis. Part 1. The Journal of Alternative and Complementary Medicine, 4(3), 289–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to the Mahasarakham University for providing financial support for this study (grant no. 5601010/2556), as well as the Mahasarakham University Faculty of Science for providing equipment. P. Jaihan gratefully thanks the Human Resource Development in Science Project (Science Achievement Scholarship of Thailand; SAST). Finally, we thank Dr. Jolyon Dodgson for language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aphidech Sangdee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaihan, P., Sangdee, K. & Sangdee, A. Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp.. Eur J Plant Pathol 146, 551–564 (2016). https://doi.org/10.1007/s10658-016-0941-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0941-7

Keywords

Navigation