Skip to main content

Advertisement

Log in

Rice pathogen Xanthomonas oryzae pv. oryzae employs inducible hrp-dependent XopF type III effector protein for its growth, pathogenicity and for suppression of PTI response to induce blight disease

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice worldwide. Xoo secretes effector proteins (T3Es) directly into the rice cell through a hrp-encoded specialized type III secretion apparatus to induce blight. We examined the function of XopF, one of the conserved effectors in Xoo, using a null mutant developed through a PCR-based homologous recombination strategy. We studied inducible, hrp-dependent expression pattern of xopF. We confirmed that XopF is translocated in rice cytosol through T3SS using adenylate cyclase activity assay. XopF regulate the in planta Xoo growth and suppress PAMP-triggered immune (PTI) response in rice. Xoo wild but not mutant, Xoo ∆xopF produced intense blight lesions upon inoculation using leaf clipping method. Further, Xoo ∆xopF showed significant reduction in planta colonization relative to the wild strain. The relative expression analysis of PTI marker genes, PR10, OsWRKY13, OsRLCK16, and OsFLS2 indicated that these genes were up-regulated 1.5 to 5 fold upon challenge-inoculation with Xoo ∆xopF indicating the role of XopF in suppressing PTI in rice. Xoo ∆xopF mutant induced more callose deposition in infected rice leaves. XopF::EYFP fusion gene product was localized to the plasma membrane when transiently expressed in Nicotiana benthamiana as well as in living onion epidermal cells. Collectively, the present study shows that XopF repress basal PTI response in plants, and thus favours Xoo growth and pathogenicity in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramovitch, R. B., Janjusevic, R., Erec Stebbins, C., & Martin, G. B. (2006). Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proceedings of National Academy of Sciences of the United States, 103, 2851–2856.

    Article  CAS  Google Scholar 

  • Akimoto-Tomiyama, C., Furutani, A., Tsuge, S., Washington Erica, J., Nishizawa, Y., Minami, E., & Ochiai, H. (2012). XopR, a Type III effector secreted by Xanthomonas oryzae pv. oryzae, suppresses microbe-associated molecular pattern triggered immunity in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 25, 505–514.

    Article  CAS  PubMed  Google Scholar 

  • Alfano, J. R., & Collmer, A. (1997). The type III (Hrp secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. Journal of Bacteriology, 179, 5655–5662.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alfano, J. R., & Collmer, A. (2004). Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annual Reiew Phytopathology, 42, 385–414.

    Article  CAS  Google Scholar 

  • Amaral, A.M. do., Toledo, C.P., Baptista, J.C., Machado, M.A. (2005). Transformation of Xanthomonas axonopodis pv. citri by electroporation. Fitopatologia Brasileira [online], 30, 292–294.

  • Ausubel, F. M. (2005). Are innate immune signalling pathways in plants and animals conserved? Nature Immunology, 6, 973–979.

    Article  CAS  PubMed  Google Scholar 

  • Bartetzko, V., Sonnewald, S., Vogel, F., Hartner, K., Stadler, R., Hammes, U. Z., & Frederik, B. (2009). The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall–associated defense responses. Molecular Plant-Microbe Interactions, 22, 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Casper-Lindley, C., Dahlbeck, D., Clark, E. T., & Staskawicz, B. J. (2002). Direct biochemical evidence for type III secretion dependent translocation of the AvrBs2 effector protein into plant cells. Proceedings of National Academy of Sciences of the United States, 99(12), 8336–8341.

    Article  CAS  Google Scholar 

  • Cheong, H., Kim, C. Y., Jeon, J. S., Lee, B. M., Sun Moon, J., & Hwang, I. (2013). Xanthomonas oryzae pv. oryzae type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice. PLoS ONE, 8(9), e73346. doi:10.1371/journal.pone.0073346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of National Academy of Sciences of the United States, 97(12), 6640–6645.

    Article  CAS  Google Scholar 

  • Goel, A. K., Lundberg, D., Torres, M. A., Matthews, R., Akimoto-Tomiyama, C., Farmer, L., Dangle, J. L., & Grant, S. R. (2008). The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Molecular Plant-Microbe Interactions, 21, 361–370.

    Article  CAS  PubMed  Google Scholar 

  • Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., Sreekala, C., Yang, F., Chu, Z., Wang, G. L., White, F. F., & Yin, Z. (2005). R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 435, 1122–1125.

    Article  CAS  PubMed  Google Scholar 

  • Jelenska, J., Yao, N., Vinatzer, B. A., Wright, C. M., Brodsky, J. L., & Greenberg, J. T. (2007). A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Currrent Biology, 17, 499–508.

    Article  CAS  Google Scholar 

  • Jiang, B. L., He, Y. Q., Cen, W. J., Wei, H. Y., Jiang, G. F., Jiang, W., Hang, X. H., Feng, J. X., Lu, G. T., Tang, D. J., & Tang, J. L. (2008). The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Research in Microbiology, 159, 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). Plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Kauffman, H. E., Reddy, A. P. K., Hsieh, S. P. Y., & Merca, S. D. (1973). An improved technique for evaluating resistance to rice varieties of Xanthomonas oryzae. Plant Disease Report, 57, 537–541.

    Google Scholar 

  • Kim, J. G., Taylor, K. W., Hotson, A., Keegan, M., Schmelz, E. A., & Mudgett, M. B. (2008). XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. Plant Cell, 20, 1915–1929.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, J. G., Li, X., Roden, J. A., Taylor, K. W., Aakre, C. D., Su, B., Lalonde, S., Kirik, A., Chen, Y., Baranage, G., McLane, H., Martin, G. B., & Mudgett, M. B. (2009). Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a Tomato atypical receptor-like kinase and TFT1. Plant Cell, 21, 1305–1323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar, R., & Mondal, K. K. (2013). XopN T3SS effector is required for growth and pathogenicity by Xanthomonas axonopodis pv. punicae, the causal agent of bacterial blight of pomegranate. Physiological Molecular Plant Pathology, 84, 36–43.

    Article  CAS  Google Scholar 

  • Lee, B. M., Park, Y. J., Park, D. S., Kang, H. W., Kim, J. G., Song, E. S., Park, I. C., Yoon, U. H., Hahn, J. H., Koo, B. S., Lee, G. B., Kim, H., Park, H. S., Yoon, K. O., Kim, J. H., Jung, C., Koh, N. H., Seo, J. S., & Go, S. J. (2005). The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 33, 577–586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mondal, K.K., Mani, C., Sinha, P., Singh, U.D., & Gogoi, R. (2012). Xanthomonas oryzae pv. oryzae causing bacterial blight in rice is well adapted to elevated CO2 and temperature. In 3rd International Agronomy Congress, Nov. 26–30, New Delhi, India.

  • Mondal, K.K., Juanaid, A., Verma, G., Mani, C., & Manju. (2013). XopF-T3E is required for growth, pathogenicity and for suppression of PTI response by Indian strain of Xanthomonas oryzae pv. oryzae, causing bacterial blight of rice. In 4th Int Conf Bacterial Blight of Rice, Dec 2–4, Hyderabad, India.

  • Mondal, K. K., Meena, B. R., Junaid, A., Verma, G., Mani, C., Majumder, D., Manju, Kumar, S., & Banik, S. (2014). Pathotyping and genetic screening of type III effectors in Indian strains of Xanthomonas oryzae pv. oryzae causing bacterial leaf blight of rice. Physiological and Molecular Plant Pathology, 86, 98–106.

    Article  CAS  Google Scholar 

  • Mudgett, M. B. (2005). New insights to the function of phytopathogenic bacterial type III effectors in plants. Annual Review of Plant Biology, 56, 509–531.

    Article  CAS  PubMed  Google Scholar 

  • Nurnberger, T., Brunner, F., Kemmerling, B., & Piater, L. (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunological Reviews, 198, 249–266.

    Article  PubMed  Google Scholar 

  • Ochiai, H., Inoue, Y., Takeya, M., Sasaki, A., & Kaku, H. (2005). Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Japanese Journal of Agricultural Research Q, 39, 275–287.

    Article  CAS  Google Scholar 

  • Salzberg, S.L., Sommer, D.D., Schatz, M.C., Phillippy, A.M., Rabinowicz, P.D., Tsuge, S., Furutani, A., Ochiai, H., Delcher, A.L., Kelley, D., Madupu, R., Puiu, D., Radune, D., Shumway, M., Trapnell, C., Aparna, G., Jha, G., Pandey, A., Patil, P.B., Ishihara, H., Meyer, D.F., Szurek, B., Verdier, V., Koebnik, R., Dow, J.M., Ryan, R.P., Hirata, H., Tsuyumu, S., Won Lee, S., Seo, Y.S., Sriariyanum, M., Ronald, P.C., Sonti, R.V., Van Sluys, M.A., Leach, J.E., White, F.F., Bogdanove, A.J. (2008). Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics, 9, 204.

  • Singh, U.D., Gogoi, R., & Mondal, K.K. (2011). Molecular approach for augmenting disease resistance in cereals: rice and maize. In Plant Pathology in India: Vision 2030, pp. 21–30, Indian Phytopathological Society, New Delhi, India. 294 pp.

  • Song, C., & Yang, B. (2010). Mutagenesis of 18 Type III effectors reveals virulence function of XopZpxo99 in Xanthomonas oryzae pv.oryzae. Molecular Plant-Microbe Interactions, 23, 893–902.

    Article  CAS  PubMed  Google Scholar 

  • Tsuge, S., Fukunaka, R., Oku, T., Tsuno, K., Ochiai, H., Inoue, Y., Kaku, H., & Kubo, Y. (2002). Expression of Xanthomonas oryzae pv. oryzae hrp genes in XOM2, a novel synthetic medium. Journal of General Plant Pathology68,363–371.

  • White, F. F., Potnis, N., Jones, J. B., & Koebnik, R. (2009). The type III effectors of Xanthomonas. Molecular Plant Pathology, 10, 749–766.

    Article  CAS  PubMed  Google Scholar 

  • Xu, K., Huang, X., Wu, M., Wang, Y., Chang, Y., Liu, K., Zhang, J., Zhang, Y., Zhang, F., Yi, L., Li, T., Wang, R., Tan, G., & Li, C. (2014). A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS ONE, 9(1), e83556. doi:10.1371/journal.pone.0083556.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang, B., Sugio, A., & White, F. F. (2005). Avoidance of host recognition by alterations in the repetitive and C-terminal regions of AvrXa7, a type III effector of Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 18, 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H., Zou, Y., Long, C., Lan, L., Chai, J., Chen, S., Tang, X., & Zhou, J. M. (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host & Microbe, 1, 175–185.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the project grant received from Department of Biotechnology, Government of India (Grant No. BT/PR14870/AGR/02/767/2010). The authors thank Dr. MB Mudgett, Associate Professor, Department of Biology, Stanford University, USA for providing the EYFP constructs and valuable suggestions during plasmid constructs development. The senior author thanks Dr. Shelly Praveen and her associates for help during confocal microscopic study. We are thankful to the Head, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India for necessary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan K. Mondal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1

(JPEG 420 kb)

Supplementary figure 2

(JPEG 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, K.K., Verma, G., Manju et al. Rice pathogen Xanthomonas oryzae pv. oryzae employs inducible hrp-dependent XopF type III effector protein for its growth, pathogenicity and for suppression of PTI response to induce blight disease. Eur J Plant Pathol 144, 311–323 (2016). https://doi.org/10.1007/s10658-015-0768-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0768-7

Keywords

Navigation