Skip to main content
Log in

Phoma medicaginis colonizes Medicago truncatula root nodules and affects nitrogen fixation capacity

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The ability of Phoma medicaginis to infect legume nodules and the subsequent effect on their functioning was investigated in Medicago truncatula lines, TN.8.20 and Jemalong6, inoculated with an efficient Sinorhizobium meliloti strain. Colonization of nodules by P. medicaginis strain Pm8 was confirmed by morphological and molecular analyses. P. medicaginis effect was more relevant on the most susceptible line, TN.8.20, where it decreased the nitrogen fixation capacity (NFC) significantly in nodules from 62 days after sowing (das) till the end of nodule life cycle; however in Jemalong6 nodules, the NFC inhibition was significant only at the flowering stage. Analyses of stress indices as structure, lipid peroxidation and leghemoglobin content did not show significant structural or metabolic alterations in infected nodules. Superoxide dismutase (SOD) activity was increased in nodules of both M. truncatula lines up to 62 das. After 78 das, increase of SOD activity continued only in Jemalong6 nodules. Changes in peroxidase (POX) activity were correlated to those revealed on NFC. Indeed, POX was decreased in nodules of TN.8.20 line but remained almost unchanged in Jemalong6. These results, suggest that POX represents a strong component of the defence mechanisms in nodules of resistant M. truncatula lines, where it could be involved in reinforcing the cell wall barrier. The stimulation of SOD activity is also a key mechanism in maintaining nodule integrity via controlling ROS overproduction when counteracting fungal attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ARA:

acetylene reduction activity

das:

days after sowing

Lghb:

Leghemoglobin

MDA:

malondialdehyde

NFC:

nitrogen fixing capacity

ROS:

Reactive oxygen species

References

  • Agrios, G. N. (2004). Plant pathology (5th ed.). San Diego: Elsevier Academic Press.

    Google Scholar 

  • Almagro, L., Gomez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barcelo, A., & Pedreno, M. A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60, 377–390.

    Article  CAS  PubMed  Google Scholar 

  • Antoun, H., & Prévost, D. (2005). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: biocontrol and biofertilization (pp. 1–38). Netherlands: Springer.

    Google Scholar 

  • Barbetti, J. M. (1995). Resistance in annual Medicago species to Phoma medicaginis and Leptosphaerulina trifolii under field conditions. Australian Journal of Experimental Agriculture, 35, 209–214.

    Article  Google Scholar 

  • Barna, B., Fodor, J., Harrach, B. D., Pogány, M., & Király, Z. (2012). The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiology and Biochemistry, 59, 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase, improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Ben Slimène, I., Tabbene, O., Djebali, N., Cosette, P., Schmitter, J. M., Jouene, T., Urdaci, M. C., & Limam, F. (2012). Putative use of Bacillus subtilis L194 strain for biocontrol of Phoma medicaginis in Medicago truncatula seedlings. Research in Microbiology, 163, 388–397.

    Article  PubMed  Google Scholar 

  • Bolwell, G. P., & Daudi, A. (2009). Reactive oxygen species in plant–pathogen interactions. In L. A. del Río & A. Puppo (Eds.), Reactive oxygen species in plant signaling, (signaling and communication in plants) (pp. 113–133). Berlin: Springer.

    Chapter  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing thenprincipal of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chihaoui, S. A., Mhadhbi, H., & Mhamdi, R. (2012). The antibiosis of nodule-endophytic agrobacteria and its potential effect on nodule functioning of Phaseolus vulgaris. Archives of Microbiology, 194, 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  • De Gara, L., De Pinto, M. C., & Tommasi, F. (2003). The antioxidant system vis-a’-vis reactive oxygen species during plant-pathogen interaction. Plant Physiology and Biochemistry, 41, 863–870.

    Article  Google Scholar 

  • De Gruyter, J., Aveskamp, M. M., Woudenberg, H. C. J., Verkley, G. J. M., Johannes, Z., Groenewald, J. Z., & Crous, P. W. (2009). Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassifi cation of the Phoma complex. Mycological Research, 113, 508–519.

    Article  PubMed  Google Scholar 

  • Deng, Z. S., Zhao, L. F., Kong, Z. Y., Yang, W. Q., Lindström, K., Wang, E. T., & Wei, G. H. (2011). Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiology Ecology, 76, 463–475.

    Article  CAS  PubMed  Google Scholar 

  • Dhingra, O. D., & Sinclair, J. B. (1995). Basic plant pathology methods. London: CRC Press.

    Google Scholar 

  • Djébali, N. (2013). Aggressiveness and host range of Phoma medicaginis isolated from Medicago species growing in Tunisia. Phytopathologia Mediterranea, 52, 3–15.

    Google Scholar 

  • Djébali, N., Mhadhbi, H., Jacquet, C., Huguet, T., & Aouani, M. E. (2007). Involvement of hydrogen peroxide, peroxidase and superoxide dismutase in response of Medicago truncatula lines differing in susceptibility to Phoma medicaginis infection. Journal of Phytopathology, 155, 633–640.

    Article  Google Scholar 

  • Djébali, N., Mhadhbi, H., Lafitte, C., Dumas, B., Esquerré-Tugayé, M. T., Aouani, M. E., & Jacquet, C. (2011). Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches. European Journal of Plant Pathology, 131, 559–571.

    Article  Google Scholar 

  • Drabkin, D. L., & Austin, J. H. (1935). Spectrophotometric studies. II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. Journal of Biological Chemistry, 112, 51.

    CAS  Google Scholar 

  • Ellwood, S. R., Kamphuis, L. G., & Oliver, R. P. (2006). Identification of sources of resistance to Phoma medicaginis isolates in Medicago truncatula SARDI core collection accessions, and a multigene differenciation of isolates. Phytopathology, 96, 1330–1336.

    Article  CAS  PubMed  Google Scholar 

  • Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751–757.

    Article  CAS  PubMed  Google Scholar 

  • Graham, J. H., Frosheiser, F. I., Stuteville, D. L., & Erwin, D. C. (1979). A compendium of alfalfa diseases. St Paul: American Phytopathological Society.

    Google Scholar 

  • Hardy, R. W. F., Holston, R. D., Jackson, E. K., & Burns, R. C. (1968). The acetylene-ethylene assay for nitrogen fixation: laboratory and field evaluation. Plant Physiology, 43, 1185–1208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Marschner review: global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1–18.

    Article  CAS  Google Scholar 

  • Ko, K. S., & Jung, H. S. (2002). Three nonorthologous ITS1 types are present in a polypore fungus Trichoderma abietinum. Molecular Phylogenetics and Evolution, 23, 112–122.

    Article  CAS  PubMed  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.

    Article  CAS  PubMed  Google Scholar 

  • Lukezic, F. I., Leath, K. T., & Levine, R. G. (1983). Pseudomonas viridiflava associated with root and crown rot of alfalfa and wilt of birdsfoot trefoil. Plant Disease, 67, 808–811.

    Article  Google Scholar 

  • Macarisin, D., Cohen, L., Eick, A., Rafael, G., Belausov, E., Wisniewski, M., & Droby, S. (2007). Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology, 97, 1491–1500.

    Article  CAS  PubMed  Google Scholar 

  • Matamoros, M. A., Dalton, D. A., Ramos, J., Clemente, M. R., Rubio, M. C., & Becana, M. (2003). Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiology, 133, 449–509.

    Article  Google Scholar 

  • Mellersh, D., Foulds, I., Higgins, V., & Heath, M. (2002). H2O2 plays different roles in determining penetration in three diverse plant-fungal interactions. Plant Journal, 29, 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Mhadhbi, H., Jebara, M., Limam, F., Huguet, T., & Aouani, M. E. (2005). Interaction between Medicago truncatula lines and Sinorhizobium meliloti strains for symbiotic efficiency and nodule antioxidant activities. Physiology Plant Journal, 124, 4–11.

    Article  CAS  Google Scholar 

  • Mhadhbi, H., Fotopoulos, V., Djebali, N., Polidoros, A. N., & Aouani, M. E. (2009a). Behaviours of Medicago truncatula-Sinorhizobium meliloti symbioses under osmotic stress in relation with symbiotic partner input. Effects on nodule functioning and protection. Journal of Agronomy and Crop Science, 195, 225–231.

    Article  CAS  Google Scholar 

  • Mhadhbi, H., Mhamdi, R., Jebara, M., Limam, F., & Aouani, M.E. (2009b). Legume-rhizobia symbiotic interaction under salt and drought constraints: Generation of reactive oxygen species and protective role of antioxidant enzymes within nodules. In A. Hemantaranjan, Ed. Scientific Publishers (India), Jodhpur. Advances in Plant Physiology, 11, 1–21

  • Mhadhbi, H., Djébali, N., Chihaoui, S. A., Jebara, M., & Mhamdi, R. (2011). Nodule senescence in Medicago truncatula-Sinorhizobium symbiosis under abiotic constraints: potential mechanisms involved in maintaining nitrogen fixing capacity. Journal of Plant Growth Regulation, 30, 480–489.

    Article  CAS  Google Scholar 

  • Mrabet, M., Mnasri, B., Romdhane, S. B., Laguerre, G., Aouani, M. E., & Mhamdi, R. (2006). Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiology Ecology, 56, 304–309.

    Article  CAS  PubMed  Google Scholar 

  • Mrabet, M., Abdellatif, E., Zribi, K., Mhamdi, R., & Djébali, N. (2011). Sinorhizobium meliloti can protect Medicago truncatula from infection by Phoma medicagenis. Phytopathologia Mediterranea, 50, 183–191.

    Google Scholar 

  • Muresu, R., Polone, E., Sulas, L., Baldan, B., Tondello, A., Delogu, G., et al. (2008). Coexistence of predominantly non culturable rhizobia with diverse, endophytic bacterial taxa within nodules of wildlegumes. FEMS Microbiology Ecology, 63, 383–400.

    Article  CAS  PubMed  Google Scholar 

  • Muresu, R., Maddau, G., Delogu, G., Cappuccinelli, P., & Squartini, A. (2010). Bacteria colonizing root nodules of wild legumes exhibit virulence-associated properties of mammalian pathogens. Antonie van Leeuwenhoek, 97, 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Oger, E., Marino, D., Guigonis, J. M., Pauly, N., & Puppo, A. (2012). Sulfenylated proteins in the Medicago truncatulaSinorhizobium meliloti symbiosis. Journal of Proteomics, 75, 4102–4113.

    Article  CAS  PubMed  Google Scholar 

  • Peng, M., & Kuc, J. (1992). Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology, 82, 696–699.

    Article  CAS  Google Scholar 

  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., et al. (2004). Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochemistry Reviews, 3, 29–60.

    Article  CAS  Google Scholar 

  • Rodriguez, R., & Leath, K. T. (1992). Pathogenicity of Phoma medicaginis var. medicaginis to crowns of alfalfa. Plant Disease, 76, 1237–1240.

    Article  Google Scholar 

  • Rose, R. J. (2008). Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Functional Plant Biology, 35, 253–264.

    Article  Google Scholar 

  • Saidi, S., Mnasri, B., & Mhamdi, R. (2011). Diversity of nodule-endophytic agrobacteria-like strains associated with different grain legumes in Tunisia. Systematic and Applied Microbiology, 34, 524–530.

    Article  PubMed  Google Scholar 

  • Seo, P. J., Lee, A. K., Xiang, F., & Park, C. M. (2008). Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant and Cell Physiology, 49, 334–344.

    Article  CAS  PubMed  Google Scholar 

  • Shiffmann, J., & Lobel, R. (1970). Haemoglobin determination and its value as an early indication of peanut Rhizobium efficiency. Plant and Soil, 33, 501–512.

    Article  Google Scholar 

  • Singh, M. P., Singh, D. K., & Rai, M. (2007). Assessment of growth, physiological and biochemical parameters and activities of antioxidative enzymes in salinity tolerant and sensitive basmati rice varieties. Journal of Agronomy and Crop Science, 193, 398–412.

    Article  CAS  Google Scholar 

  • Smith, I. M., Dunez, J., Phillips, D. H., Lelliot, R. A., & Archer, S. A. (1988). European handbook of plant diseases. London: Blackwell Scientific.

    Book  Google Scholar 

  • Tivoli, R., Baranger, A., Sivasithamparam, K., & Barbetti, M. J. (2006). Annual Medicago: from a model crop challenged by a spectrum of nectrotrophic pathogens to a model plant to explore the nature of disease resistance. Annals of Botany, 98, 1117–1128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokala, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Salove, M. H., Deobald, L. A., Bailey, J. F., & Morra, M. J. (2002). Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology, 65, 2161–2171.

    Article  Google Scholar 

  • Unger, C., Kleta, S., Jandl, G., & Tiedemann, A. (2005). Suppression of the defense-related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. Journal of Phytopathology, 153, 15–26.

    Article  CAS  Google Scholar 

  • Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defence-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • White, T. J., Brunsn, S. L., & Taylorn, J. W. (1990). Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gefand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications. New York: Academic.

    Google Scholar 

  • Zribi, K., Mhamdi, R., Huguet, T., & Aouani, M. E. (2004). Distribution and genetic diversity of rhizobia nodulating natural populations of Medicago truncatula in Tunisian soils. Soil Biology and Biochemistry, 36, 903–908.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Ms Synda Cheneaoui, Principal Engineer at the CBBC, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haythem Mhadhbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihaoui, SA., Djébali, N., Mrabet, M. et al. Phoma medicaginis colonizes Medicago truncatula root nodules and affects nitrogen fixation capacity. Eur J Plant Pathol 141, 375–383 (2015). https://doi.org/10.1007/s10658-014-0549-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0549-8

Keywords

Navigation