Skip to main content
Log in

Morphological, pathological and genetic variations among isolates of Cochliobolus sativus from Nepal

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Spot blotch, caused by Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur, is one of the important diseases of wheat worldwide. The main objective of this study was to investigate the phenotypic and genotypic variability among C. sativus isolates from the hills and plains in Nepal. A total of 48 monoconidial isolates of C. sativus from the hills (n = 24 isolates) and plains (n = 24 isolates) in Nepal were analyzed for morphology, aggressiveness and genetic structure. C. sativus isolates were grouped into three categories on the basis of their colony texture and mycelia colour. Thirteen isolates from the hills and plains belonging to three morphological groups were randomly selected and evaluated for aggressiveness on eight wheat cultivars (Chirya 1, Chirya 7, Milan/Shanghai 7, SW 89–5422, PBW 343, BL 1473, BL 3036, and RR 21) at the seedling stage. Nonparametric analysis revealed that the isolates from the plains (median disease rating of 5) were significantly (P = 0.0001) more aggressive than the isolates from the hills (median disease rating of 3). A significant (P = 0.0001) isolate by cultivar interaction was demonstrated and the isolates from the same geographic region and morphological group displayed different degrees of aggressiveness on wheat cultivars tested. Combined IS-PCR and rep-PCR analyses revealed moderate gene diversity (H = 0.24 and 0.25 for the hills and plains, respectively). Low linkage disequilibrium (LD) value and non-significant (P = 0.001) population differentiation (G″ST = 0.05) were detected, indicating that isolates of C. sativus from the hills and plains in Nepal were genetically similar. Analysis of molecular variation (AMOVA) revealed low (7%) levels of genetic variation between the hill and plain populations, whereas >93% of genetic variation was found within populations. Overall, C. sativus isolates from Nepal are pathologically and genetically diverse, and such information will be useful in developing wheat cultivars resistant to C. sativus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari, T. B., Mew, T. W., & Leach, J. E. (1999). Genotypic and pathotypic diversity in Xanthomonas oryzae pv. oryzae in Nepal. Phytopathology, 89, 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Agapow, P. M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1, 101–102.

    Article  CAS  Google Scholar 

  • Aggarwal, R., Singh, V. B., Gurjar, M. S., Gupta, S., & Srinivas, P. (2009). Intraspecific variations in Indian isolates of Bipolaris sorokiniana infecting wheat based on morphological, pathogenic and molecular characters. Indian Phytopathology, 62, 449–460.

    Google Scholar 

  • Ahmed, A. V., Rahman, M. Z., Bhuiyan, K. A., & Mian, I. H. (1997). Variation in isolates of Cochliobolus sativus from wheat. Bangladesh Journal, 13, 29–35.

    Google Scholar 

  • Alves, A., Henriques, I., Fragoeiro, S., Santos, C., Phillips, A. J. L., & Correia, A. (2004). Applicability of rep-PCR genomic fingerprinting to molecular discrimination of members of the genera Phaeoacremonium and Phaeomoniella. Plant Pathology, 53, 629–634.

    Article  CAS  Google Scholar 

  • Berbee, M. L., Pirseyedi, M., & Hubbard, S. (1999). Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 91, 964–977.

    Article  CAS  Google Scholar 

  • Brunner, E., Domhof, S., & Langer, F. (2002). Nonparametric analysis of longitudinal data in factorial experiments. New York: Wiley.

    Google Scholar 

  • Duveiller, E. (2004). Controlling foliar blights of wheat in the rice-wheat systems of Asia. Plant Disease, 88, 552–556.

    Article  Google Scholar 

  • Duveiller, E., & Sharma, R. C. (2009). Genetic improvement and crop management strategies to minimize yield losses in warm non-traditional wheat growing areas due to Spot blotch pathogen Cochliobolus sativus. Journal of Phytopathology, 157, 521–534.

    Article  Google Scholar 

  • Duveiller, E., Kandel, Y. R., Sharma, R. C., & Shrestha, S. M. (2005). Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology, 95, 248–256.

    Article  PubMed  CAS  Google Scholar 

  • Edel, V., Steinberg, C., Avelange, I., Laguerre, G., & Alabouvette, C. (1995). Comparison of three molecular methods for the characterization of Fusarium oxysporum strains. Phytopathology, 85, 579–585.

    Article  CAS  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611–2620.

    Article  PubMed  CAS  Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    PubMed  CAS  Google Scholar 

  • Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 47–50.

    CAS  Google Scholar 

  • Fetch, T. G., Jr., & Steffenson, B. J. (1999). Rating scales for assessing infection responses of barley infected with Cochliobolus sativus. Plant Disease, 83, 213–217.

    Article  Google Scholar 

  • Ghazvini, H., & Tekauz, A. (2007). Virulence diversity in population of Cochliobolus sativus. Plant Disease, 91, 814–821.

    Article  Google Scholar 

  • Gurel, F., Albayrak, G., Ozlem, D., Cepni, E., & Tunali, B. (2010). Use of rep-PCR for genetic diversity analyses in Fusarium culmorum. Journal of Phytopathology, 158, 387–389.

    Article  CAS  Google Scholar 

  • Hedrick, P. (2005). A standardized genetic differentiation measure. Evolution, 59, 1633–1638.

    PubMed  CAS  Google Scholar 

  • Jaiswal, S. K., Sweta, L. C. P., Sharma, S., Kumar, S., Prasad, R., Pandy, S. P., Chand, R., & Joshi, A. K. (2007). Identification of molecular marker and aggressiveness for different groups of Cochliobolus sativus isolates causing spot blotch disease in wheat (Triticum aestivum L.). Current Microbiology, 55, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, J., Schafer, P., Huckelhoven, R., Langen, G., Baltruschat, H., Stein, E., Nagarajan, S., & Kogel, K.-H. (2002). Cochliobolus sativus, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Molecular Plant Pathology, 3, 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. Gl. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  • Louws, F. J., Fulbright, D. W., Stephens, C. T., & de Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.

    PubMed  CAS  Google Scholar 

  • Louws, F. J., Fulbright, D. W., Stephens, C. T., & de Bruijn, F. J. (1995). Differentiation of genomic structure by rep-PCR fingerprinting to rapidly classify Xanthomonas campestris pv. vesicatoria. Phytopathology, 85, 528–536.

    Article  CAS  Google Scholar 

  • Mahto, B. N. (1999). Management of Helminthosporium leaf blight of wheat in Nepal. Indian Phytopathol., 52, 408–413.

    Google Scholar 

  • Mahto, B. N., Gurung, S., & Adhikari, T. B. (2011). Assessing genetic resistance to spot blotch, stagonospora nodorum blotch and tan spot in wheat from Nepal. European Journal of Plant Pathology, 131, 249–260.

    Article  Google Scholar 

  • Maraite, M., Di Zinno, T., Longree, H., Daumerie, V., & Duveiller, E. (1998). Fungi associated with foliar blight of wheat in warm areas. In E. Duveiller, H. J. Dubin, J. Reeves, & A. McNab (Eds.), Proc. Int. Workshop Helimenthosporium Diseases of Wheat: Spot Blotch and Tan Spot (pp. 293–300). Mexico: CIMMYT, DF.

    Google Scholar 

  • McDonald, J. G., Wong, E., & White, G. P. (2000). Differentiation of Tilletia species by rep-PCR genomic fingerprinting. Plant Disease, 84, 1121–1125.

    Article  CAS  Google Scholar 

  • Mehta, Y. R. (1981). Identification of races of Helminthosporium sativum of wheat in Brazil. Pesquisa Agropecuaria Brasiliera (Brasilla), 16, 331–336.

    Google Scholar 

  • Mehta, Y. R., Mehta, A., & Rosato, Y. B. (2002). ERIC and REP banding patterns and sequence analysis of the internal transcribed spacer region of Stemphylium solani of cotton. Current Microbiology, 44, 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Meirmans, P. G., & Hedrick, P. W. (2011). Assessing population structure: Fst and related measures. Molecular Ecology Resources, 11, 5–18.

    Article  PubMed  Google Scholar 

  • Muiru, W. M., Koopmann, B., Tiedemann, A. V., Mutitu, E. W., & Kimenju, J. W. (2010). Use of repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC) and BOX sequences to fingerprint Exserohilum turcicum isolates. Journal of Applied Biosciences, 30, 1828–1838.

    Google Scholar 

  • Nascimento, E. J. M., & van der Sand, S. T. (2008). Restriction analysis of the amplified ribosomal DNA spacers ITS1 and ITS2 of Cochliobolus sativus isolates. World Journal of Microbiology and Biotechnology, 24, 647–652.

    Article  CAS  Google Scholar 

  • Nei, M. (1978). Estimation of average heterogygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590

  • Neupane, R. B., Sharma, R. C., Duveiller, E., Ortiz-Ferrara, G., Ojha, B. R., Rosyara, U. R., Bhandari, D., & Bhatta, M. R. (2007). Major gene controls of field resistance to spot blotch in wheat genotypes ‘Milan/Shanghai #7’ and ‘Chirya.3. Plant Disease, 91, 692–697.

    Article  CAS  Google Scholar 

  • Oliveira, A. M. R., Matsumura, A. T. S., Prestes, A. M., Matos, C. S., & van der Sand, S. T. (1998). Morphological variability and pathogenicity in isolates of Cochliobolus sativus. Fitopatologia Brasileira, 23, 349–353.

    Google Scholar 

  • Pandey, S. P., Sharma, S., Chand, R., Shahi, P., & Joshi, A. K. (2008). Clonal variability and its relevance in generation of new pathotypes in the spot blotch pathogen. C. sativus. Current Microbiology, 56, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Poloni, A., Pessi, I. S., Frazzon, A. P. G., & van der Sand, S. T. (2009). Morphology, physiology, and virulence of Cochliobolus sativus isolates. Current Microbiology, 59, 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    PubMed  CAS  Google Scholar 

  • Purkayastha, S., Kaur, B., Arora, P., Bisyer, I., Dilbaghi, N., & Chaudhury, A. (2008). Molecular genotyping of Macrophomina phaseolina isolates: comparison of microsatellite primed PCR and repetitive element sequence-based PCR. Journal of Phytopathology, 156, 372–381.

    Article  CAS  Google Scholar 

  • Shah, D. A., & Madden, L. V. (2004). Nonparametric analysis of ordinal data in designed factorial experiments. Phytopathology, 94, 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, R. C., Duveiller, E., Ahmed, F., Arun, B., Bhandari, D., Bhatta, M. R., Chand, R., Chaurasiya, P. C. P., Gharti, D. B., Hossain, M. H., Joshi, A. K., Mahto, B. N., Malaker, P. K., Reza, M. A., Rahman, M., Samad, M. A., Shaheed, M. A., Siddique, A. B., Singh, A. K., Singh, K. P., Singh, R. N., & Singh, S. P. (2004). Helminthosporium leaf blight resistance and agronomic performance of wheat genotypes across warm regions of South Asia. Plant Breeding, 123, 520–524.

    Article  Google Scholar 

  • Sharma, R. C., Duveiller, E., & Ortiz-Ferrara, G. (2007). Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic plains of South Asia: Is climate change already taking its toll? Field Crops Research, 103, 109–118.

    Article  Google Scholar 

  • Sivanesan, A., & Holliday, P. (1981). CMI descriptions of pathogenic fungi and bacteria shet - No. 701. Kew: CAB – International Mycological Institue.

    Google Scholar 

  • Stoddart, J. A., & Taylor, J. F. (1988). Genotypic diversity: Estimation and prediction in samples. Genetics, 118, 705–711.

    PubMed  CAS  Google Scholar 

  • Tinline, R. D. (1988). Cochliobolus sativus, a pathogen of wide host range. In D. S. Ingram & P. H. Williams (Eds.), Advances in plant pathology, vol. 6 (pp. 113–122). London: Academic.

    Google Scholar 

  • Valjavec-Gratian, M., & Steffenson, B. J. (1997). Pathotypes of Cochliobolus sativus on barley. Plant Disease, 81, 1275–1278.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal DNA for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to the methods and applications (pp. 315–322). San Diego: Academic.

    Google Scholar 

  • Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H., & Mao, J. X. (1997). POPGENE, the user friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Canada.

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zhong, S., & Steffenson, B. J. (2001). Virulence and molecular diversity in Cochliobolus sativus. Phytopathology, 91, 469–476.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

B. N. Mahto was supported by the Council for International Exchange of Scholars (CIES), Institute of International Education (IIE), the U. S. Fulbright Core Program, Washington, D. C., USA and the Fulbright Commission Nepal, Gyaneshwor, Kathmandu, Nepal, and Nepal Agricultural Research Council (NARC), Nepal. The authors thank R. P. Bhusal, R. Pokharel, M. R. Bhatta, D. Thapa, D. Bhandari, J. Patel, J. M. Hansen, S. Gyawali, and Dheeraj Soni for their help and Mike Bonman and Mary Pull for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tika B. Adhikari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahto, B.N., Gurung, S., Nepal, A. et al. Morphological, pathological and genetic variations among isolates of Cochliobolus sativus from Nepal. Eur J Plant Pathol 133, 405–417 (2012). https://doi.org/10.1007/s10658-011-9914-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9914-z

Keywords

Navigation