Skip to main content
Log in

Narrow sense heritability estimates of bacterial leaf spot resistance in pseudo F2 (F1) population of mulberry (Morus spp.)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial leaf spot incited by Xanthomonas campestris pv. mori is a devastating foliar disease of mulberry reported globally. Host plant resistance is the most sustainable and economic control measure but so far unexplored. Highly heterozygous plant behaviour and scant genetic information of bacterial leaf spot resistance limits a targetted breeding approach in mulberry. In the present research eight pseudo-F2(F1)full-sib progenies derived from selected resistant and susceptible sources were evaluated symptomatically for bacterial leaf spot resistance under natural disease occurrence in 2008 and 2009. Significant variation for bacterial leaf spot resistance was observed in the parents and progenies. Broad sense heritability estimate (0.9) indicates that selection of resistant genotypes can be useful for exploitation in future advanced breeding programs for mulberry. High narrow sense heritability estimates (0.76)[2008] and (0.79)[2009] suggest additive gene effects for the disease resistant trait. The continuous frequency distribution of diseases severity across the progenies indicates that bacterial leaf spot resistance in mulberry may be inherited quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allard, R. W. (1999). Principles of plant breeding. New York: Wiley.

    Google Scholar 

  • Aravanopoulos, F. A. (2010). Contribution of leaf morphometrics in the study of genetic entries in Salix L. Electronic Journal of Plant Breeding, 1, 1320–1328.

    Google Scholar 

  • Banerjee, R., Das, N. K., Maji, M. D., Mandal, K., & Bajpai, A. K. (2009). Screening of mulberry genotypes for disease resistance in different seasons to bacterial leaf spot. Indian Journal of Genetics, 69, 292–296.

    Google Scholar 

  • Banerjee, R., Maji, M. D., Ghosh, P., & Sarkar, A. (2009). Genetic analysis of disease resistance against Xanthomonas campestris pv.mori in mulberry (Morus spp.) and identification of germplasm with high resistance. Archives of Phytopathology and Plant Protection, 42, 291–297.

    Article  CAS  Google Scholar 

  • Ben-Hui Leu. (1997). Statistical genomics linkage, mapping and QTL analysis. Introduction to genomics. (pp. 59–60). CRC press: LLC.

  • Bisognin, D. A., Douches, D. S., Jastrzebski, K., & Kirk, W. W. (2002). Half-sib progeny evaluation and selection of potatoes resistant to the US8 genotype of Phytopthora infestans from crosses between resistant and susceptible parents. Euphytica, 125, 129–138.

    Article  CAS  Google Scholar 

  • Bokmeyer, J. M., Bonos, S. A., & Meyer, W. A. (2009). Inheritance characteristics of brown patch resistance in tall fescue. Crop Science, 49, 2302–2308.

    Article  Google Scholar 

  • Bonos, S. A. (2006). Heritability of dollar spot resistance in creeping bentgrass. Phytopathology, 96, 808–812. doi:10.1094/PHYTO-96-0808.

    Article  PubMed  Google Scholar 

  • Bonos, S. A. (2011). Gene action of dollar spot resistance in creeping bentgrass. Journal of Phytopathology, 159, 12–18.

    Article  Google Scholar 

  • Bonos, S. A., Casler, M. D., & Meyer, W. A. (2003). Inheritance of dollar spot resistance in creeping bentgrass. Crop Science, 43, 2189–2196.

    Article  Google Scholar 

  • Bovi, M. L. A., Deresende, N. D. V., Saes, L. A., & Uzzo, R. P. (2004). Genetic analysis for sooty mold resistance and heart of palm yield in Archontophoenix. Science Agriculture (Piracicaba, Braz.), 61, 178–184.

    Article  Google Scholar 

  • Burruezo, A. R., Prohens, J., & Nuez, F. (2003). Performance of hybrid segregating populations of pepino(Solanum muricatum) and its relation to genetic distance among parents. The Journal of Horticultural Science and Biotechnology, 78, 911–918.

    Google Scholar 

  • Burton, G. W., & Devane, E. H. (1953). Estimating heritability in tall fescue(Festuca arundinaccea) from replicated clonal material. Agronomy Journal, 45, 478–481.

    Article  Google Scholar 

  • Dandin, S. B., & Giridhar, K. (2010). Handbook of sericulture technologies. In (4th Ed), Mulberry diseases and pests-control measures (pp. 157–158). Bangalore, India: Central Silk Board.

  • Dandin, S. B., Jolly, M. S., Susheelamma, B. N., Mallikarjunappa, R. S., Sastry, C. R. (1983, March). Evaluation and utilization of existing genetic variability in mulberry. (Paper presented at the National Seminar on Silk Research and Development, Bangalore, India).

  • Das, B. C. (1984). Mulberry varieties, exploitations and pathology. Sericologia, 24, 369–372.

    Google Scholar 

  • Das, B. C., & Krishnaswami, S. (1965). Some observations on interspecific hybridization in mulberry. Indian Journal of Sericulture, 4, 1–8.

    Google Scholar 

  • Dudley, J. W., & Mole, R. H. (1969). Interpretation and use of heritability and genetic variances in plant breeding. Crop Science, 9, 257–262.

    Article  Google Scholar 

  • Ertian, H. (2003). Protection of mulberry plants (translated from Chinese). New Delhi: Oxford and IBH publishing Co Pvt Ltd.

    Google Scholar 

  • Fain, P. R. (1978). Characteristics of simple sib-ship variance tests for detection of major loci and application to height, weight and spatial performance. Annals of Human Genetics, 42, 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Falcconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. Essex: Longman Group Ltd.

    Google Scholar 

  • Fehr, W. R. (1987). Principles of cultivar development, vol.1. Theory and technique. New York: Macmillan Publishing Co.

    Google Scholar 

  • Guimaraes, L. M. S., Resende, M. D. V., Lau, D., Rosse, L. N., Alves, A. A., & Alfenas, A. C. (2010). Genetic control of Eucalyptus urophylla and E. grandis resistance to canker caused by Chrysoporthe cubensis. Genetics and Molecular Biology, 33, 525–531.

    Article  Google Scholar 

  • Han, Y., Bonos, S. A., Clarke, B. B., & Meyer, W. A. (2006). Inheritance of resistance to grey leaf spot disease in perennial ryegrass. Crop Science, 46, 1143–1148.

    Article  Google Scholar 

  • Horsefall, J. G., & Cowling, E. B. (1978). In J. G. Horsefall & E. B. Cowling (Eds.), Plant disease (pp. 120–136). New York: Academic.

    Google Scholar 

  • Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybean. Agronomy Journal, 47, 314–318.

    Article  Google Scholar 

  • Jorge, V., & Verdier, V. (2002). Qualitative and quantitative evaluation of cassava bacterial blight resistancein F1 progeny of a cross between elite cassava clones. Euphytica, 123, 41–48.

    Article  Google Scholar 

  • Kim, H. S., Sneller, C. H., & Diers, B. W. (1999). Evaluation of soybean cultivars for resistance to Sclerotia stems rot in field environments. Crop Science, 39, 64–68.

    Article  Google Scholar 

  • Kitchen, L. A. (1998). Exploring statistics. In (2nd Ed), A modern introduction to data analysis and inference. Pacific Grove: CA Duxbury Press.

  • Klein, J. I. (1998). A plan for advanced-generation breeding of jack pine. Forest Genetics, 5, 73–83.

    Google Scholar 

  • Kore, S. S., & Patil, P. S. (1985, January). Investigations of bacterial blight disease of mulberry (Morus alba L.) (Paper presented in the 37th Annual Meeting of Indian Phytopathological Society, New Delhi).

  • Lush, J. L. (1949). Heritability of quantitative characters in farm animals. Hereditas (Suppl.), 35, 356–357.

    Google Scholar 

  • Lynch, M., & Walsh, B. (1998). Genetics analysis of quantitative traits. Sunderland: Sinauer Associates, Inc.

    Google Scholar 

  • Maji, M. D., Kadri, S. M. H., & Pal, S. C. (2000). Control of bacterial leaf spot of mulberry caused by Xanthomonas campestris pv. mori. Indian Journal of Sericulture, 38, 81–83.

    Google Scholar 

  • Maji, M. D., Sau, H., Das, B. K., & Urs, S. R. (2006). Screening of some indigenous and exotic Mulberry Varieties against major foliar fungal and bacterial diseases. International Journal of Industrial Entomology, 12, 35–35.

    Google Scholar 

  • Maji, M. D., Banerjee, R., Das, N. K., Chakrabarty, S., Bajpai, A. K. (2008). Role of meteorological factors on the incidence of mulberry diseases. Journal of Agrometeorology, Special Issue-Part I, 193–196.

  • Majidi, M. M., Mirlohi, A., & Amini, F. (2009). Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinaceae Schreb.). Euphytica, 167, 323–331. doi:10.1007/s10681-009-9887-6.

    Article  Google Scholar 

  • McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–210.

    Google Scholar 

  • Mohan, M., Nair, S., Bhagwat, A., Krishna, T. G., Yano, M., Bhatia, C. R., et al. (1997). Genome mapping, molecular markers and marker assisted selection in crop plants. Molecular Breeding, 3, 87–103.

    Article  CAS  Google Scholar 

  • Nagaraj, M. S., Srinivasachary, & Khan, A. N. A. (2000). National seminar on tropical sericulture. In K. P. Chinnnaswamy, R. Govindan, N. K. Krishnaprasad, & D. N. R. Reddy (Eds.), Growth requirements of Xanthmonas campestris pv.moricola causing bacterial blight in mulberry (pp. 124–126). Bangalore: University of Agricultural Sciences, GKVK.

    Google Scholar 

  • Owolade, O. F. (2006). Line x Tester analysis for resistance to cassava anthracnose disease. World Journal of Agricultural Sciences, 2, 109–114.

    Google Scholar 

  • Philip, T., Govindaiah, Bajpai, A. K., Nagabhushanam, G., & Naidu, N. R. (1997). A preliminary survey on Mulberry disease in South India. Indian Journal of Sericulture, 36, 128–132.

    Google Scholar 

  • Poehlman, J. M., & Sleper, D. A. (1995). Breeding field crops. Ames: Iowa State University Press.

    Google Scholar 

  • Ravikumar, M. R., Prakash, B. G., & Samarao, J. (2004). Report on bacterial blight in mulberry from northern Karnataka and its management. Sericologia, 44, 381–383.

    Google Scholar 

  • Sato, M., & Takahashi, K. (1973). Rough colony mutant of Pseudomonas mori(Boyer et Lambert)Stevens. Annals of the Phytopathology Society of Japan, 39, 425–428.

    Article  Google Scholar 

  • Sharma, D. D., Chowdary, N. B., Naik, N., Rajan, M. V., & Dandin, S. B. (2005). Blight diseases of mulberry (Morus spp.)—a review. Sericologia, 45, 25–231.

    Google Scholar 

  • Sinha, S. K., & Saxena, S. F. (1966). First record of bacterial blight of mulberry in India caused by Pseudomonas mori(Boyer et Lambert)Stevens. Indian Phytopathology, 19, 318–319.

    Google Scholar 

  • Tulsieram, L. K., Glaubitz, J. C., Kiss, G., & Carlson, J. E. (1992). Single tree genetic linkage mapping in conifers using haploid DNA from megagametophyte. Nature Biotechnology, (NY), 10, 686–690.

    Article  CAS  Google Scholar 

  • Vijayan, K., Chauhan, S., Das, N. K., Chakroborti, S. P., & Roy, B. N. (1997). Leaf yield component combining abilities in mulberry(Morus spp.). Euphytica, 98, 47–52.

    Article  Google Scholar 

Download references

Acknowledgements

The authors duly acknowledge Mr. P Dey and Mr. T Maitra for providing technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, R., Das, N.K., Doss, S.G. et al. Narrow sense heritability estimates of bacterial leaf spot resistance in pseudo F2 (F1) population of mulberry (Morus spp.). Eur J Plant Pathol 133, 537–544 (2012). https://doi.org/10.1007/s10658-011-9894-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9894-z

Keywords

Navigation