Skip to main content
Log in

Ectopic expression of barley constitutively activated ROPs supports susceptibility to powdery mildew and bacterial wildfire in tobacco

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

ROPs (also called RACs) are RHO-like monomeric G-proteins of plants, well-known as molecular switches in plant signal transduction processes, which are involved in plant development and a variety of biotic and abiotic stress responses. The barley (Hordeum vulgare) ROPs RACB, RAC1 and RAC3 have been shown to be involved in cellular growth, polarity and in susceptibility to the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei. We produced transgenic tobacco (Nicotiana tabacum) plants expressing constitutively activated (CA) mutants of the barley ROPs RACB and RAC3 to monitor the impact of heterologous ROP expression on cell polarity and disease susceptibility of tobacco. CA HvROPs influenced leaf texture, disturbed root hair polarity and induced cell expansion in tobacco. Both barley ROPs induced super-susceptibility to the compatible powdery mildew fungus Golovinomyces cichoracearum but only CA HvRAC3 induced super-susceptibility to the bacterial leaf pathogen Pseudomonas syringae pv. tabaci. Data suggest involvements of ROPs in tobacco cell expansion, polar growth and in response to bacterial and fungal leaf pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Bgh :

Blumeria graminis f.sp. hordei

CA:

constitutively-activated

DN:

dominant-negative

Pst :

Pseudomonas syringae pv. tabaci

References

  • An, Q., Hückelhoven, R., Kogel, K. H., & van Bel, A. J. E. (2006). Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cellular Microbiology, 8, 1009–1019. doi:10.1111/j.1462-5822.2006.00683.x.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, D., Lavy, M., Efrat, Y., Efroni, I., Bracha-Drori, K., Abu-Abied, M., et al. (2005). Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Molecular Biology of the Cell, 16, 1913–1927. doi:10.1091/mbc.E04-07-0562.

    Article  PubMed  CAS  Google Scholar 

  • Brembu, T., Winge, P., Bones, A. M., & Yang, Z. A. (2006). RHOse by any other name: a comparative analysis of animal and plant Rho GTPases. Cell Research, 16, 435–445. doi:10.1038/sj.cr.7310055.

    Article  PubMed  CAS  Google Scholar 

  • Carol, R. J., Takeda, S., Linstead, P., Durrant, M. C., Kakesova, H., Derbyshire, P., et al. (2005). A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature, 438, 1013–1016. doi:10.1038/nature04198.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. Y., Cheung, A. Y., & Wu, H. M. (2003). Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. The Plant Cell, 15, 237–249. doi:10.1105/tpc.007153.

    Article  PubMed  CAS  Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J. H., Mylona, P., Miedema, H., Torres, M. A., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422, 442–446. doi:10.1038/nature01485.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y., Li, H., & Yang, Z. (2002). The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. The Plant Cell, 14, 777–794. doi:10.1105/tpc.001537.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G., & Yang, Z. (2005). Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell, 120, 687–700. doi:10.1016/j.cell.2004.12.026.

    Article  PubMed  CAS  Google Scholar 

  • Horsh, R., Fry, J., Hoffman, H., Eicholts, D., Rogers, S., & Fraley, R. (1985). Simple and general method for transferring genes into plants. Science, 277, 1229–1231.

    Google Scholar 

  • Jones, M. A., Raymond, M. J., Yang, Z., & Smirnoff, N. (2007). NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. Journal of Experimental Botany, 58, 1261–1270. doi:10.1093/jxb/erl279.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M. A., Shen, J. J., Fu, Y., Li, H., Yang, Z., & Grierson, C. S. (2002). The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. The Plant Cell, 14, 763–776. doi:10.1105/tpc.010359.

    Article  PubMed  CAS  Google Scholar 

  • Jung, Y. H., Agrawal, G. K., Rakwal, R., Kim, J. A., Lee, M. O., Choi, P. G., et al. (2006). Functional characterization of OsRacB GTPase—a potentially negative regulator of basal disease resistance in rice. Plant Physiology and Biochemistry, 44, 68–77. doi:10.1016/j.plaphy.2005.12.001.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, T., Koita, H., Nakatsubo, T., Hasegawa, K., Wakabayashi, K., Takahashi, H., et al. (2006). Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proceedings of the National Acadamemy of Sciences of the U. S. A., 103, 230–235.

    Article  CAS  Google Scholar 

  • Kay, S., Hahn, S., Marois, E., Hause, G., & Bonas, U. (2007). A bacterial effector acts as aplant transcription factor and induces a cell size regulator. Science, 318, 648–651. doi:10.1126/science.1144956.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, Y., Kobayashi, I., Funaki, Y., Fujimoto, S., Takemoto, T., & Kunoh, H. (1997). Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. The Plant Journal, 11, 525–537. doi:10.1046/j.1365-313X.1997.11030525.x.

    Article  CAS  Google Scholar 

  • Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C., et al. (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. The Journal of Cell Biology, 145, 317–330. doi:10.1083/jcb.145.2.317.

    Article  PubMed  CAS  Google Scholar 

  • Kost, B. (2008). Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends in Cell Biology, 18, 119–127. doi:10.1016/j.tcb.2008.01.003.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C., Bednarek, P., & Schulze-Lefert, P. (2008). Secretory pathways in plant immune responses. Plant Physiology, 147, 1575–1583. doi:10.1104/pp. 108.121566.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., & Yang, Z. (2008). Tip growth: signaling in the apical dome. Current Opinion in Plant Biology, 11, 662–671. doi:10.1016/j.pbi.2008.10.002.

    Article  PubMed  CAS  Google Scholar 

  • Langen, G., Imani, J., Altincicek, B., Kieseritzky, G., Kogel, K. H., & Vilcinskas, A. (2006). Transgenic expression of gallerimycin, a novel anti fungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biological Chemistry, 387, 549–557. doi:10.1515/BC.2006.071.

    Article  PubMed  CAS  Google Scholar 

  • Moeder, W., Yoshioka, K., & Klessig, D. F. (2005). Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Molecular Plant-Microbe Interactions, 18, 116–124. doi:10.1094/MPMI-18-0116.

    Article  PubMed  CAS  Google Scholar 

  • Molendijk, A. J., Bischoff, F., Rajendrakumar, C. S., Friml, J., Braun, M., Gilroy, S., et al. (2001). Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. The EMBO Journal, 20, 2779–2788. doi:10.1093/emboj/20.11.2779.

    Article  PubMed  CAS  Google Scholar 

  • Morel, J., Fromentin, J., Blein, J. P., Simon-Plas, F., & Elmayan, T. (2004). Rac regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. The Plant Journal, 37, 282–293.

    PubMed  CAS  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, 15, 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Ono, E., Wong, H. L., Kawasaki, T., Hasegawa, M., Kodama, O., & Shimamoto, K. (2001). Essential role of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences of the United States of America, 98, 759–764. doi:10.1073/pnas.021273498.

    Article  PubMed  CAS  Google Scholar 

  • Opalski, K. S., Schultheiss, H., Kogel, K. H., & Hückelhoven, R. (2005). The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. The Plant Journal, 41, 291–303. doi:10.1111/j.1365-313X.2004.02292.x.

    Article  PubMed  CAS  Google Scholar 

  • Pathuri, I. P., Zellerhoff, N., Schaffrath, U., Hensel, G., Kumlehn, J., Kogel, K. H., et al. (2008). Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. Plant Cell Reports, 27, 1877–1887. doi:10.1007/s00299-008-0607-9.

    Article  PubMed  CAS  Google Scholar 

  • Schiene, K., Puhler, A., & Niehaus, K. (2000). Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a Rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. Molecular & General Genetics, 263, 761–770. doi:10.1007/s004380000248.

    Article  CAS  Google Scholar 

  • Schultheiss, H., Dechert, C., Kogel, K. H., & Hückelhoven, R. (2002). A Small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiology, 128, 1447–1454. doi:10.1104/pp. 010805.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss, H., Dechert, C., Kogel, K. H., & Hückelhoven, R. (2003). Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. The Plant Journal, 36, 589–560. doi:10.1046/j.1365-313X.2003.01905.x.

    Article  PubMed  CAS  Google Scholar 

  • Tao, L. Z., Cheung, A. Y., & Wu, H. M. (2002). Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. The Plant Cell, 14, 2745–2760. doi:10.1105/tpc.006320.

    Article  PubMed  CAS  Google Scholar 

  • Wong, H. L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., et al. (2007). Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. The Plant Cell, 19, 4022–4034. doi:10.1105/tpc.107.055624.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., & Fu, Y. (2007). ROP/RAC GTPase signaling. Current Opinion in Plant Biology, 10, 490–494. doi:10.1016/j.pbi.2007.07.005.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Z. L., & Yang, Z. (2000). The Rop GTPase: an emerging signaling switch in plants. Plant Molecular Biology, 44, 1–9. doi:10.1023/A:1006402628948.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Jörg Vogelsberg (University of Giessen) for support of the tissue culture growth of plant material, to Caroline Hoefle (Technische Universität München) for help with statistical data analysis and to Holger Schultheiss (University of Giessen) for plant genotyping. This work was supported by the German Research Foundation (FOR666, HU886/1), the University of Agricultural and Natural Resources, College of Agriculture, Department of Plant Protection, Sari, Iran and by the German Academic Exchange Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Hückelhoven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathuri, I.P., Imani, J., Babaeizad, V. et al. Ectopic expression of barley constitutively activated ROPs supports susceptibility to powdery mildew and bacterial wildfire in tobacco. Eur J Plant Pathol 125, 317–327 (2009). https://doi.org/10.1007/s10658-009-9484-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9484-5

Keywords

Navigation