Skip to main content
Log in

AFLP analysis of genetic diversity in populations of Botrytis elliptica and Botrytis tulipae from the Netherlands

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The objective of this study was to assess the genetic diversity and to infer the mode of reproduction of Botrytis elliptica and B. tulipae in the Netherlands. First, three molecular typing methods were compared for their ability to differentiate isolates of B. tulipae, B. elliptica, and B. cinerea. The methods compared were multilocus sequencing, restriction analysis of the ribosomal intergenic spacer (IGS) region, and amplified fragment length polymorphism (AFLP) analysis. AFLP fingerprinting provided the most efficient method to differentiate isolates within each Botrytis species and therefore this method was used for population analyses of B. elliptica and B. tulipae. Isolates of both species were sampled during successive growing seasons in experimental field plots in Lisse and other locations in the Netherlands. Among 174 B. elliptica isolates, 105 genotypes could be discriminated and 87 genotypes were found only once, reflecting high genotypic variation. Clonal genotypes were found only within growing seasons and in one location. Linkage disequilibrium analyses indicated that between 9.4% and 19.3% of the loci in clone-corrected samples were linked. The multilocus association index provided no evidence for random mating. We conclude that sexual recombination occurs in the B. elliptica population. Among the 170 B. tulipae isolates, 25 genotypes could be discriminated and four genotypes were found only once, reflecting a low genotypic variation. Clonal genotypes were frequently found in different growing seasons and different locations. Linkage disequilibrium analyses indicated that between 25.2% and 48.6% of the loci in clone-corrected samples were linked. We conclude that the B. tulipae population is mainly clonal with some recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agapow, P.-M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1, 101–102.

    CAS  Google Scholar 

  • Albertini, C., Thebaud, G., Fournier, E., & Leroux, P. (2002). Eburicol 14α-demethylase gene (CVP51) polymorphism and speciation in Botrytis cinerea. Mycological Research, 106, 1171–1178.

    Article  CAS  Google Scholar 

  • Beever, R. E., & Weeds, P. L. (2004). Taxonomy and genetic variation of Botrytis and Botryotinia. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 29–52). Dordrecht, the Netherlands: Kluwer Academic Press.

  • Burt, A., Carter, D. A., Koenig, G. L., White, T. J., & Taylor, J. W. (1996). Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proceedings of the National Academy of Science USA, 93, 770–773.

    Article  CAS  Google Scholar 

  • Carbone, I., Anderson, J. B., & Kohn, L. M. (1999). Patterns of descent in clonal lineages and their multilocus fingerprints are resolved with combined gene genealogies. Evolution, 53, 11–21.

    Article  CAS  Google Scholar 

  • Carbone, I., & Kohn, L. (2004). Inferring process from pattern in fungal population genetics. Applied Mycology and Biotechnology, 4, 1–30.

    Google Scholar 

  • Chao, A., & Shen, T. (2003). Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environmental and Ecological Statistics, 10, 429–443.

    Article  Google Scholar 

  • Coley-Smith, J. R., & Javed, Z. U. R. (1972). Germination of sclerotia of Botrytis tulipae, the cause of tulip fire. Annals of Applied Biology, 71, 99–109.

    Article  Google Scholar 

  • Daboussi, M.-J., & Capy, P. (2003). Transposable elements in filamentous fungi. Annual Review of Microbiology, 57, 275–299.

    Article  PubMed  CAS  Google Scholar 

  • Diolez, A., Marches, F., Fortini, D., & Brygoo, Y. (1995). Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Applied and Environmental Microbiology, 61, 103–108.

    PubMed  CAS  Google Scholar 

  • Doornik, A. W., & Bergman, B. H. H. (1973). Some factors influencing the outgrowth of Botrytis tulipae from lesions on tulip bulbs after planting. Netherlands Journal of Plant Pathology, 79, 203–207.

    Article  Google Scholar 

  • Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.

    CAS  PubMed  Google Scholar 

  • Faretra, F., Antonacci, E., & Pollastro, S. (1988). Sexual behaviour and mating system of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. Journal of General Microbiology, 134, 2543–2550.

    Google Scholar 

  • Fournier, E., Giraud, T., Loiseau, A., Vautrin, D., Estoup, A., Solignac, M., Cornuet, J. M., & Brygoo, Y. (2002). Characterization of nine polymorphic microsatellite loci in the fungus Botrytis cinerea (Ascomycota). Molecular Ecology Notes, 2, 253–255.

    Article  CAS  Google Scholar 

  • Fournier, E., Levis, C., Fortini, D., Leroux, P., Giraud, T., & Brygoo, Y. (2003). Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus and its use as a population marker. Mycologia, 95, 251–261.

    CAS  Google Scholar 

  • Giraud, T., Fortini, D., Levis, C., Leroux, P., & Brygoo, Y. (1997). RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Molecular Biology and Evolution, 14, 1177–1185.

    PubMed  CAS  Google Scholar 

  • Grünwald, N. J., Goodwin, S. B., Milgroom, M. G., & Fry, W. E. (2003). Analysis of genotypic diversity data for populations of microorganisms. Phytopathology, 93, 738–746.

    PubMed  Google Scholar 

  • Holz, G., Coertze, S., & Williamson, B. (2004). The ecology of Botrytis on plant surfaces. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 9–27). Dordrecht, the Netherlands: Kluwer Academic Press.

  • Huang, J., Hsieh, T.-F., Chastagner, G. A., & Hsiang, T. (2001). Clonal and sexual propagation in Botrytis elliptica. Mycological Research, 105, 833–842.

    Article  Google Scholar 

  • Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.

    Article  PubMed  CAS  Google Scholar 

  • Kerssies, A., Bosker-van Zessen, I., Wagemakers, C. A. M., & van Kan, J. A. L. (1997). Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Plant Disease 81, 781–786.

    Google Scholar 

  • Kessel, G. J. T., de Haas, B. H., Lombaers-van der Plas, C. H., van den Ende, J. E., Pennock-Vos, M. G., van der Werf, W., & Köhl, J. (2001). Comparative analysis of the role of substrate specificity in biological control of Botrytis elliptica in lily and B. cinerea in cyclamen with Ulocladium atrum. European Journal of Plant Pathology, 107, 273–284.

    Article  Google Scholar 

  • Levis, C., Fortini, D., & Brygoo, Y. (1997). Flipper, a mobile Fot1-like transposable element in Botrytis cinerea. Molecular and General Genetics, 254, 674–680.

    Article  PubMed  CAS  Google Scholar 

  • Lorbeer, J. W., Seyb, A. M., de Boer, M., & van den Ende, J. E. (2004), Botrytis on bulb crops. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds), Botrytis: Biology, pathology and control (pp. 273–294). Dordrecht, the Netherlands: Kluwer Academic Publishers.

  • Maynard Smith, J., Smith, N. H., O’Rourke, M., & Spratt, B. G. (1993). How clonal are bacteria? Proceedings of the National Academy of Science USA, 90, 4384–4388.

    Article  Google Scholar 

  • McGuire, I. C., Davis, J. E., Double, M. L., MacDonald, W. L., Rauscher, J. T., McCawley, S., & Milgroom, M. G. (2005). Heterokaryon formation and parasexual recombination between vegetatively incompatible lineages in a population of the chestnut blight fungus, Cryphonectria parasitica. Molecular Ecology, 14, 3657–3669.

    Article  PubMed  CAS  Google Scholar 

  • Milgroom, M. G. (1996). Recombination and the multilocus structure of fungal pathogens. Annual Review of Phytopathology, 34, 457–477.

    Article  PubMed  CAS  Google Scholar 

  • Milgroom, M. G., Lipari, S. E., & Powell, W. A. (1992). DNA fingerprinting and analysis of population structure in the chestnut blight fungus, Cryphonectria parasitica. Genetics, 131, 297–306.

    PubMed  CAS  Google Scholar 

  • Moyano, C., Alfonso, C., Gallego, J., Raposo, R., & Melgarejo, P. (2003). Comparison of RAPD and AFLP marker analysis as a means to study the genetic structure of Botrytis cinerea populations. European Journal of Plant Pathology, 109, 515–522.

    Article  CAS  Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

    Google Scholar 

  • Pollastro, S., Faretra, F., Canio, V., & De Guido, A. (1996). Characterization and genetic analysis of field isolates of Botryotinia fuckeliana (Botrytis cinerea) resistant to dichlofluanid. European Journal of Plant Pathology, 102, 607–613.

    Article  Google Scholar 

  • Prins, T. W., Tudzynski, P., von Tiedemann, A., Tudzynski, B., ten Have, A., Hansen, M. E., Tenberge, K., & van Kan, J. A. L. (2000). Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In J. W. Kronstad (Ed.), Fungal pathology (pp. 33–65). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Staats, M., van Baarlen, P., & van Kan, J. A. L. (2005). Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Molecular Biology and Evolution, 22, 333–346.

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende, J. E., & Pennock-Vos, M. G. (1997). Primary sources of inoculum of Botrytis elliptica in lily. Acta Horticulturae, 430, 591–595.

    Google Scholar 

  • Van der Vlugt-Bergmans, C. J. B., Brandwagt, B. F., van’t Klooster, J. W., Wagemakers, C. A. M., & van Kan, J. A. L. (1993). Genetic variation and segregation of DNA polymorphisms in Botrytis cinerea. Mycological Research, 97, 1193–1200.

    Article  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van der Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., & Zabeau, M. (1995). AFLP: A new concept for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic Press.

  • Zhonghua, M., & Michailides, T. J. (2005). Genetic structure of Botrytis cinerea populations from different host plants in California. Plant Disease, 10, 1083–1089.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Kim M. Plummer and Dr. Ioannis Stergiopoulos for critically reading the manuscript. We are grateful to Marjan de Boer and Ineke Pennock (PPO Lisse) for allowing us to sample in their experimental field and for excellent technical advice. Fien Meijer-Dekens, Petra van den Berg, Marleen Höfte, David Tena Marin and Ronald Wilterdink are acknowledged for technical assistance. This research was funded by the Dutch Technology Foundation STW, applied science division of NWO and the technology programme of the Ministry of Economic Affairs (project WEB5564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. L. van Kan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staats, M., van Baarlen, P. & van Kan, J.A.L. AFLP analysis of genetic diversity in populations of Botrytis elliptica and Botrytis tulipae from the Netherlands. Eur J Plant Pathol 117, 219–235 (2007). https://doi.org/10.1007/s10658-006-9085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-006-9085-5

Keywords

Profiles

  1. J. A. L. van Kan