Abstract
The aim of this study is to conduct a systematic analysis of the SARS-CoV-2 levels in urban sewage and evaluate the associated positivity rates, thereby developing comprehensive insights into the epidemic situation and providing valuable inputs for the development of effective disease prevention and control strategies. The PubMed, Scopus, Embase, China National Knowledge Infrastructure, Wanfang Database, and VIP databases were systematically searched based on the predefined retrieval strategy. The literature published up to February 2023 was meticulously screened according to the predetermined inclusion and exclusion criteria, and the relevant data were extracted for subsequent integration. The quality assessment of the included studies adhered to the rigorous Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement guidelines. The meta-analysis was conducted using Stata 17.0 software. The meta-analysis included a total of 34 studies, encompassing 8429 municipal wastewater samples. A random effects model was employed for the analysis, revealing an overall SARS-CoV-2 positivity rate of 53.7% in the municipal wastewater samples. The subgroup analyses demonstrated significant regional variations in the SARS-CoV-2 positivity rate in municipal wastewater, with Africa exhibiting the highest rate at 62.5% (95% confidence interval [CI] 47.4 ~ 76.0%) and Oceania displaying the lowest at 33.3% (95% CI 22.0 ~ 46.3%). However, the subgroup analyses based on the sampling site, strain prevalence period, and laboratory testing method did not yield any statistically significant differences. The SARS-CoV-2 positivity rate in wastewater is relatively high globally, although it exhibits regional disparities. Regions with larger populations and lower economic levels demonstrate higher viral detection rates in sewage. Different types of wastewater sampling sites can be employed to monitor distinct aspects of the COVID-19 pandemic. Continuous surveillance of SARS-CoV-2 in wastewater plays a pivotal role in complementing clinical data, helping to track outbreak progression across diverse regions.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Acosta, N., Bautista, M. A., Hollman, J., McCalder, J., Beaudet, A. B., Man, L., Waddell, B. J., Chen, J., Li, C., Kuzma, D., Bhatnagar, S., Leal, J., Meddings, J., Hu, J., Cabaj, J. L., Ruecker, N. J., Naugler, C., Pillai, D. R., Achari, G., & Parkins, M. D. (2021). A multicenter study investigating SARS-CoV-2 in tertiary-care hospital wastewater. Viral burden correlates with increasing hospitalized cases as well as hospital-associated transmissions and outbreaks. Water Research, 201, 117369. https://doi.org/10.1016/j.watres.2021.117369
Acosta, N., Bautista, M. A., Waddell, B. J., Du, K., McCalder, J., Pradhan, P., Sedaghat, N., Papprais, C., Bucher Beaudet, A., Chen, J., Van Doorn, J., Xiang, K., Chan, L., Vivas, L., Low, K., Lu, X., Lee, J., Westlund, P., Chekouo, T., & Parkins, M. D. (2023). Surveillance for SARS-CoV-2 and its variants in wastewater of tertiary care hospitals correlates with increasing case burden and outbreaks. Journal of Medical Virology, 95(2), e28442. https://doi.org/10.1002/jmv.28442
Ahmed, W., Tscharke, B., Bertsch, P. M., Bibby, K., Bivins, A., Choi, P., Clarke, L., Dwyer, J., Edson, J., Nguyen, T. M. H., O’Brien, J. W., Simpson, S. L., Sherman, P., Thomas, K. V., Verhagen, R., Zaugg, J., & Mueller, J. F. (2021). SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. Science of the Total Environment, 761, 144216. https://doi.org/10.1016/j.scitotenv.2020.144216
Albastaki, A., Naji, M., Lootah, R., Almeheiri, R., Almulla, H., Almarri, I., Alreyami, A., Aden, A., & Alghafri, R. (2021). First confirmed detection of SARS-CoV-2 in untreated municipal and aircraft wastewater in Dubai, UAE: The use of wastewater based epidemiology as an early warning tool to monitor the prevalence of COVID-19. Science of the Total Environment, 760, 143350. https://doi.org/10.1016/j.scitotenv.2020.143350
Amin, N., Haque, R., Rahman, M. Z., Rahman, M. Z., Mahmud, Z. H., Hasan, R., Islam, M. T., Sarker, P., Sarker, S., Adnan, S. D., Akter, N., Johnston, D., Rahman, M., Liu, P., Wang, Y., Shirin, T., Rahman, M., & Bhattacharya, P. (2023). Dependency of sanitation infrastructure on the discharge of faecal coliform and SARS-CoV-2 viral RNA in wastewater from COVID and non-COVID hospitals in Dhaka. Bangladesh. Science of the Total Environment, 867, 161424. https://doi.org/10.1016/j.scitotenv.2023.161424
Arora, S., Nag, A., Kalra, A., Sinha, V., Meena, E., Saxena, S., Sutaria, D., Kaur, M., Pamnani, T., Sharma, K., Saxena, S., Shrivastava, S. K., Gupta, A. B., Li, X., & Jiang, G. (2022). Successful application of wastewater-based epidemiology in prediction and monitoring of the second wave of COVID-19 with fragmented sewerage systems-a case study of Jaipur (India). Environmental Monitoring and Assessment, 194(5), 342. https://doi.org/10.1007/s10661-022-09942-5
Aydoǧdu, S., Karasartova, D., Savci, Ü., Güreser, A. S., Akveran, G. A., Akti, M., Gurel, B., Kocaman, C., Acar, A., Koşar, N., Xiao, L., & Taylan Ozkan, A. (2021). Detection of SARS-CoV-2 RNA with a simple concentration method in wastewater in Turkey: A pilot study in Çorum. Flora, 24(4), 620–627.
Baldovin, T., Amoruso, I., Fonzo, M., Buja, A., Baldo, V., Cocchio, S., & Bertoncello, C. (2021). SARS-CoV-2 RNA detection and persistence in wastewater samples: An experimental network for COVID-19 environmental surveillance in Padua, Veneto region (NE Italy). Science of the Total Environment, 760, 143329. https://doi.org/10.1016/j.scitotenv.2020.143329
Barbosa, M. R. F., Garcia, S. C., Bruni, A. C., Machado, F. S., de Oliveira, R. X., Dropa, M., da Costa, A. C., Leal, E., Brandao, C. J., Oliveira da Silva, R. L., Iko, B. Y., Kondo, V. K. M., Silva de Araujo, R., Barbosa da Silveira, V., Montes de Andrade, T., Nunes, D. R., Ramos Janini, L. M., Torres Braconi, C., Terzi Maricato, J., & Sato, M. I. Z. (2022). One-year surveillance of SARS-CoV-2 in wastewater from vulnerable urban communities in metropolitan São Paulo Brazil. Journal of Water and Health, 20(2), 471–490. https://doi.org/10.2166/wh.2022.210
Castro-Gutierrez, V., Hassard, F., Vu, M., Leitao, R., Burczynska, B., Wildeboer, D., Stanton, I., Rahimzedah, S., Baio, G., Garelick, H., Hofman, J., Kasprzyk-Hordern, B., Kwaitkowska, R., Majeed, A., Priest, S., Grimsley, J., Lundy, L., Singer, A. C., & Di Cesare, M. (2022). Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach. PLoS ONE, 17(6), e0270168. https://doi.org/10.1371/journal.pone.0270168
De Giglio, O., Triggiano, F., Apollonio, F., Diella, G., Fasano, F., Stefanizzi, P., Lupozzo, M., Brigida, S., Calia, C., Pousis, C., Marzella, A., La Rosa, G., Lucentini, L., Suffredini, E., Barbuti, G., Caggiano, G., & Montagna, M. T. (2021). Potential use of untreated wastewater for assessing COVID-19 trends in Southern Italy. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph181910278
de Sousa, A. R. V., do Carmo Silva, L., de Curcio, J. S., da Silva, H. D., EduardoAnunciação, C., MariaSalemIzacc, S., SanchesNeto, F. O., & de PaulaSilveira, L. E. (2022). “pySewage”: A hybrid approach to predict the number of SARS-CoV-2-infected people from wastewater in Brazil. Environmental Science and Pollution Research International, 29(44), 67260–67269. https://doi.org/10.1007/s11356-022-20609-z
Döhla, M., Schulte, B., Wilbring, G., Kümmerer, B. M., Döhla, C., Sib, E., Richter, E., Ottensmeyer, P. F., Haag, A., Engelhart, S., Eis-Hubinger, A. M., Exner, M., Mutters, M. T., Schmithausen, R. M., & Streeck, H. (2022). SARS-CoV-2 in environmental samples of quarantined households. Viruses. https://doi.org/10.3390/v14051075
Foladori, P., Cutrupi, F., Segata, N., Manara, S., Pinto, F., Malpei, F., Bruni, L., & La Rosa, G. (2020). SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. Science of the Total Environment, 743, 140444. https://doi.org/10.1016/j.scitotenv.2020.140444
Grube, A. M., Coleman, C. K., LaMontagne, C. D., Miller, M. E., Kothegal, N. P., Holcomb, D. A., Blackwood, A. D., Clerkin, T. J., Serre, M. L., Engel, L. S., Guidry, V. T., Noble, R. T., & Stewart, J. R. (2023). Detection of SARS-CoV-2 RNA in wastewater and comparison to COVID-19 cases in two sewersheds, North Carolina, USA. Science of the Total Environment, 858(3), 159996. https://doi.org/10.1016/j.scitotenv.2022.159996
Habtewold, J., McCarthy, D., McBean, E., Law, I., Goodridge, L., Habash, M., & Murphy, H. M. (2022). Passive sampling, a practical method for wastewater-based surveillance of SARS-CoV-2. Environmental Research, 204(B), 112058. https://doi.org/10.1016/j.envres.2021.112058
Hata, A., Hara-Yamamura, H., Meuchi, Y., Imai, S., & Honda, R. (2021). Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak. Science of the Total Environment, 758, 143578. https://doi.org/10.1016/j.scitotenv.2020.143578
Kumar, M., Joshi, M., Jiang, G., Yamada, R., Honda, R., Srivastava, V., Mahlknecht, J., Barcelo, D., Chidambram, S., Khursheed, A., Graham, D. W., Goswami, R., Kurodo, K., Tiwari, A., & Joshi, C. (2023). Response of wastewater-based epidemiology predictor for the second wave of COVID-19 in Ahmedabad, India: A long-term data perspective. Environmental Pollution, 337, 122471. https://doi.org/10.1016/j.envpol.2023.122471
Kumar, M., Joshi, M., Patel, A. K., & Joshi, C. G. (2021). Unravelling the early warning capability of wastewater surveillance for COVID-19: A temporal study on SARS-CoV-2 RNA detection and need for the escalation. Environmental Research, 196, 110946. https://doi.org/10.1016/j.envres.2021.110946
La Rosa, G., Iaconelli, M., Mancini, P., Bonanno Ferraro, G., Veneri, C., Bonadonna, L., Lucentini, L., & Suffredini, E. (2020). First detection of SARS-CoV-2 in untreated wastewaters in Italy. Science of the Total Environment, 736, 139652. https://doi.org/10.1016/j.scitotenv.2020.139652
Lancaster, E., Byrd, K., Ai, Y., & Lee, J. (2022). Socioeconomic status correlations with confirmed COVID-19 cases and SARS-CoV-2 wastewater concentrations in small-medium sized communities. Environmental Research, 215(2), 114290. https://doi.org/10.1016/j.envres.2022.114290
Lewis, H. C., Ware, H., Whelan, M., Subissi, L., Li, Z., Ma, X., Nardone, A., Valenciano, M., Cheng, B., Noel, K., Cao, C., Yanes-Lane, M., Herring, B. L., Talisuna, A., Ngoy, N., Balde, T., Clifton, D., Van Kerkhove, M. D., Buckeridge, D., & Bergeri, I. (2022). SARS-CoV-2 infection in Africa: A systematic review and meta-analysis of standardised seroprevalence studies, from January 2020 to December 2021. BMJ Global Health. https://doi.org/10.1136/bmjgh-2022-008793
Maida, C. M., Amodio, E., Mazzucco, W., La Rosa, G., Lucentini, L., Suffredini, E., Palermo, M., Anolina, G., Iaia, F. R., Merlo, F., Chiarelli, M. G., Siragusa, A., Vitale, F., & Tramuto, F. (2022). Wastewater-based epidemiology for early warning of SARS-CoV-2 circulation: A pilot study conducted in Sicily, Italy. International Journal of Hygiene and Environmental Health, 242, 113948. https://doi.org/10.1016/j.ijheh.2022.113948
Masachessi, G., Castro, G., Cachi, A. M., Marinzalda, M., Liendo, M., Pisano, M. B., Sicilia, P., Ibarra, G., Rojas, R. M., Lopez, L., Barbas, G., Cardozo, D., Re, V. E., & Nates, S. V. (2022). Wastewater-based epidemiology as a silent sentinel of the trend of SARS-CoV-2 circulation in the community in central Argentina. Water Research, 219, 118541. https://doi.org/10.1016/j.watres.2022.118541
Murni, I. K., Oktaria, V., Handley, A., McCarthy, D. T., Donato, C. M., Nuryastuti, T., Supriyati, E., Dharma Puti, D. A., Sari, H. M., Laksono, I. S., Thobari, J. A., & Bines, J. E. (2022). The feasibility of SARS-CoV-2 surveillance using wastewater and environmental sampling in Indonesia. PLoS ONE, 17(10), e0274793. https://doi.org/10.1371/journal.pone.0274793
Prado, T., Fumian, T. M., Mannarino, C. F., Resende, P. C., Motta, F. C., Eppinghaus, A. L. F., De Chagas Vale, V. H., Soares Braz, R. M., da Ribeiro, S., de Andrade, J., Goncalves Maranhao, A., & Miagostovich, M. P. (2021). Wastewater-based epidemiology as a useful tool to track SARS-CoV-2 and support public health policies at municipal level in Brazil. Water Research, 191, 116810. https://doi.org/10.1016/j.watres.2021.116810
Ramezani Ziarani, F., Tahamtan, A., Safari, H., Tabarraei, A., & Dadban Shahamat, Y. (2022). Detection of SARS-CoV-2 genome in the air, surfaces, and wastewater of the referral hospitals, Gorgan, north of Iran. Iranian Journal of Microbiology, 14(5), 617–623. https://doi.org/10.18502/ijm.v14i5.10954
Reno, U., Regaldo, L., Ojeda, G., Schmuck, J., Romero, N., Polla, W., Kergaravat, S. V., & Gagneten, A. M. (2022). Wastewater-based epidemiology: Detection of SARS-CoV-2 RNA in different stages of domestic wastewater treatment in Santa Fe, Argentina. Water, Air & Soil Pollution, 233(9), 372. https://doi.org/10.1007/s11270-022-05772-w
Reynolds, L. J., Gonzalez, G., Sala-Comorera, L., Martin, N. A., Byrne, A., Fennema, S., Holohan, N., Kuntamukula, S. R., Sarwar, N., Nolan, T. M., Stephens, J. H., Whitty, M., Bennett, C., Luu, Q., Morley, U., Yandle, Z., Dean, J., Joyce, E., O’Sullivan, J. J., & Meijer, W. G. (2022). SARS-CoV-2 variant trends in Ireland: Wastewater-based epidemiology and clinical surveillance. Science of the Total Environment, 838(2), 155828. https://doi.org/10.1016/j.scitotenv.2022.155828
Rosiles-González, G., Carrillo-Jovel, V. H., Alzate-Gaviria, L., Betancourt, W. Q., Gerba, C. P., Moreno-Valenzuela, O. A., Tapia-Tussell, R., & Hernández-Zepeda, C. (2021). Environmental surveillance of SARS-CoV-2 RNA in wastewater and groundwater in Quintana Roo Mexico. Food and Environmental Virology, 13(4), 457–469. https://doi.org/10.1007/s12560-021-09492-y
Saththasivam, J., El-Malah, S. S., Gomez, T. A., Jabbar, K. A., Remanan, R., Krishnankutty, A. K., Ogunbiyi, O., Rasool, K., Ashhab, S., Rashkeev, S., Bansaad, M., Ahmed, A. A., Mohamoud, Y. A., Malek, J. A., Abu Raddad, L. J., Jeremijenko, A., Abu Halaweh, H. A., Lawler, J., & Mahmoud, K. A. (2021). COVID-19 (SARS-CoV-2) outbreak monitoring using wastewater-based epidemiology in Qatar. Science of the Total Environment, 774, 145608. https://doi.org/10.1016/j.scitotenv.2021.145608
Shah, S., Gwee, S. X. W., Ng, J. Q. X., Lau, N., Koh, J., & Pang, J. (2022). Wastewater surveillance to infer COVID-19 transmission: A systematic review. Science of the Total Environment, 804, 150060. https://doi.org/10.1016/j.scitotenv.2021.150060
Shaheen, M. N. F., Elmahdy, E. M., & Shahein, Y. E. (2022). The first detection of SARS-CoV-2 RNA in urban wastewater in Giza Egypt. Journal of Water and Health, 20(8), 1212–1222. https://doi.org/10.2166/wh.2022.098
Sharif, S., Ikram, A., Khurshid, A., Salman, M., Mehmood, N., Arshad, Y., Ahmed, J., Safdar, R. M., Rehman, L., Mujtaba, G., Hassian, J., Ali, J., Angez, M., Alam, M. M., Akthar, R., Malik, M. W., Baig, M. Z. I., Rana, M. S., Usman, M., & Ali, N. (2021). Detection of SARS-CoV-2 in wastewater using the existing environmental surveillance network: A potential supplementary system for monitoring COVID-19 transmission. PLoS ONE, 16(6), e0249568. https://doi.org/10.1371/journal.pone.0249568
Sherchan, S. P., Shahin, S., Patel, J., Ward, L. M., Tandukar, S., Uprety, S., Schmitz, B. W., Ahmed, W., Simpson, S., & Gyawali, P. (2021). Occurrence of SARS-CoV-2 RNA in six municipal wastewater treatment plants at the early stage of COVID-19 pandemic in the United States. Pathogens. https://doi.org/10.3390/pathogens10070798
Sherchan, S. P., Shahin, S., Ward, L. M., Tandukar, S., Aw, T. G., Schmitz, B., Ahmed, W., & Kitajima, M. (2020). First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Science of the Total Environment, 743, 140621. https://doi.org/10.1016/j.scitotenv.2020.140621
Toledo, D. M., Robbins, A. A., Gallagher, T. L., Hershberger, K. C., Barney, R. E., Salmela, S. M., Pilcher, D., Cervinski, M. A., Nerenz, R. D., Szczepiorkowski, Z. M., Tsongalis, G. J., Lefferts, J. A., Martin, I. W., & Hubbard, J. A. (2022). Wastewater-based SARS-CoV-2 surveillance in northern New England. Microbiology Spectrum, 10(2), e0220721. https://doi.org/10.1128/spectrum.02207-21
Welling, C. M., Singleton, D. R., Haase, S. B., Browning, C. H., Stoner, B. R., Gunsch, C. K., & Grego, S. (2022). Predictive values of time-dense SARS-CoV-2 wastewater analysis in university campus buildings. Science of the Total Environment, 835, 155401. https://doi.org/10.1016/j.scitotenv.2022.155401
WHO. (2020). Status of environmental surveillance for SARS-CoV-2 virus. Retrieved from https://www.who.int/news-room/commentaries/detail/status-of-environmental-surveillance-for-sars-cov-2-virus
Wu, F., Xiao, A., Zhang, J., Moniz, K., Endo, N., Armas, F., Bushman, M., Chai, P. R., Duvallet, C., Rickson, T. B., Foppe, K., Ghaeli, N., Gu, X., Hanage, W. P., Huang, K. H., Lee, W. L., Matus, M., McElroy, K. A., Rhode, S. F., & Alm, E. J. (2021). Wastewater surveillance of SARS-CoV-2 across 40 U.S. states. MedRxiv. https://doi.org/10.1101/2021.03.10.21253235
Funding
This work was supported by the Young Innovative Talents of Zhejiang Health Science and Technology Program (grant number 2022RC063); the Key Project of Hangzhou Health Science and Technology Plan (grant number ZD20210026); the Hangzhou Medical and Health Technology Major Project (grant number Z20210006); and the Zhejiang Medical and Health Technology Plan Project (grant number 2022KY1039).
Author information
Authors and Affiliations
Contributions
All the authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by CK, XH, and LY. The first draft of the manuscript was written by CHENG Keyi, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Ethics approval
As this is a meta-analysis study, no ethical approval is required.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cheng, K., Lv, Y., Li, C. et al. Meta-analysis of the SARS-CoV-2 positivity rate in municipal wastewater. Environ Geochem Health 46, 119 (2024). https://doi.org/10.1007/s10653-024-01895-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10653-024-01895-7