Skip to main content

Advertisement

Log in

Characterization of lignite deposits of Barmer Basin, Rajasthan: insights from mineralogical and elemental analysis

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The geochemistry of fly ash produced from the combustion of coal at thermal power plants presents a significant challenge for disposal and environmental impact due to its complex mineralogical and elemental composition. The objective of this study was to investigate the mineralogical and elemental distribution of thirty lignite samples from the Barmer Basin using advanced techniques such as X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). XRD analysis revealed the presence of minerals such as haematite (Fe2O3), nepheline, anhydrite, magnesite, andalusite, spinel and anatase. Other minor minerals included albite, siderite, periclase, calcite, mayenite, hauyne, pyrite, cristobalite, quartz, nosean and kaolinite. XRF analysis demonstrated that the most abundant elements in the Barmer Basin lignite ash were iron oxide (Fe2O3), sulphur oxide (SO3), calcium oxide (CaO), and quartz (SiO2) followed by minor traces of toxic oxides (SrO, V2O5, NiO, Cr2O3, Co2O3, CuO) that are known to have adverse effects on human health and the environment. The rare earth element (REE) composition showed higher concentrations of Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and Sc at the Giral and lower concentrations at Sonari mine. The Barmer lignites recorded higher concentration of trace elements such as V, Cr, Co, Ni, Cu and Sr while lower concentration of Rb, Cs, Ba, Pb, As, Th and U were observed within optimal range. The study findings revealed the predominant mineral concentration, elemental makeup, trace elements and rare earth elements associated with lignite reserves in the Barmer Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aide, M.T., & Aide, C. (2012). Rare earth elements: Their importance in understanding soil genesis. ISRN Soil Science. https://doi.org/10.5402/2012/783876

  • Aleali, M., Rahimpour-Bonab, H., Moussavi-Harami, R., & Jahani, D. (2013). Environmental and sequence stratigraphic implications of anhydrite textures: A case from the Lower Triassic of the Central Persian Gulf. Journal of Asian Earth Sciences, 75, 110–125. https://doi.org/10.1016/j.jseaes.2013.07.017

    Article  Google Scholar 

  • Ali, J. R., & Aitchison, J. C. (2014). Greater India’s northern margin prior to its collision with Asia. Basin Research, 26, 73–84. https://doi.org/10.1111/bre.12040

    Article  Google Scholar 

  • Armentrout, J. M., Malecek, S. J., & Vinod, R. (1996). AAPG Gulf Coast Association of Geological Societies Meeting San Antonio, Texas October 2–4, 1996. AAPG Bulletin, 80(9), 1494–1533.

    Google Scholar 

  • Baker, J., Waight, T., & Ulfbeck, D. (2002). Rapid and highly reproducible analysis of rare earth elements by multiple collector inductively coupled plasma mass spectrometry. Geochimica Et CosmochimicaActa, 66(20), 3635–3646.

    Article  CAS  Google Scholar 

  • Bank, T., Roth, E., Howard, B., & Granite, E. (2016). U.S. Department of Energy National Energy Technology Laboratory: Geology of Rare Earth Deposits,” U.S. Department of Energy, Pittsburgh, PA, accessed Mar. 10, 2017. https://www.netl.doe.gov/research/coal/rare-earth-elements/publications

  • Beaton, A. P., Goodarzi, F., & Potter, J. (1991). The petrography, mineralogy and geochemistry of a Paleo-cene lignite from southern Saskatchewan, Canada. International Journal of Coal Geology, 17, 117–148. https://doi.org/10.1016/0166-5162(91)90007-6

    Article  CAS  Google Scholar 

  • Benson, S. A. (1987). Laboratory Studies of Ash Deposit Formation during the Combustion of Western U.S. Coals. Unpublished Ph.D. Thesis, Pennsylvania State University, Pennsylvania, pp. 1−266.

  • Bhattacharyya, S., Donahoe, R. J., & Patel, D. (2009). Experimental study of chemical treatment of coal fl y ash to reduce the mobility of priority trace elements. Fuel, 88, 1173–1184. https://doi.org/10.1016/j.fuel.2007.11.006

    Article  CAS  Google Scholar 

  • Biswas, M., Puniya, M.K., Gogoi, M.P., Dasgupta, S., Mukherjee, S., & Kar, N.R. (2022). Morphotectonic analysis of petroliferous Barmer rift basin (Rajasthan, India). Journal of Earth System Science, 131, 140. https://doi.org/10.1007/s12040-022-01871-8

  • Bousˇka, V., Pesˇek, J., & Sykorova, I. (2000). Probable modes of occurrence of chemical elements in coal. Acta Montana, Ser. B. Fuel, Carbon, Mineral Process, Praha, No.10 (117), 53–90.

  • Bradshaw, N., Hall, E. F., & Sanderson, N. E. (1989). Communication. Inductively coupled plasma as an ion source for high-resolution mass spectrometry. Journal of Analytical Atomic Spectrometry, 4(8), 801–803.

  • Chatterjee, S., Goswami, A., & Scotese, C.R. (2013). The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research, 23(1), 238–267. https://doi.org/10.1016/j.gr.2012.07.001

  • Chen, J., Chen, P., Yao, D. X., Liu, Z., Wu, Y. S., Liu, W. Z., & Hu, Y. B. (2015). Mineralogy and geochemistry of late Permian coals from the Donglin Coal Mine in the Nantong coalfield in Chongqing, south western China. The International Journal of Coal Geology, 149, 24–40. https://doi.org/10.1016/j.coal.2015.06.014

    Article  Google Scholar 

  • Chen, J., Liu, G., Kang, Y., Wu, B., Sun, R., Zhou, C., & Wu, D. (2014). Coal utilization in China: Environmental impacts and human health. Environmental Geochemistry and Health, 36(4), 735–753. https://doi.org/10.1007/s10653-013-9592-1

    Article  CAS  Google Scholar 

  • Choi, S. K., Lee, S., Song, Y. K., & Moon, H. S. (2002). Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash disposal mound. Fuel, 81, 1083–1090.

    Article  CAS  Google Scholar 

  • Chowdhury, M., Singhal, M., Datta, S., Sunder, V., O’Sullivan, T., Hansen, P. A., & Burley, S.D. (2011). Reservoir Characterisation of the Low Permeability Siliceous Barmer Hill Formation, Barmer Basin, India. In SPE Asia Pacific Oil and Gas Conference and Exhibition. OnePetro. https://doi.org/10.2118/146474-MS

  • Compton, P. M. (2009). The geology of the Barmer Basin, Rajasthan, India, and the origins of its major oil reservoir, the Fatehgarh Formation. Petroleum Geoscience, 15, 117–130. https://doi.org/10.1144/1354-079309-8

    Article  CAS  Google Scholar 

  • Dai, S., Li, D., & Chou, C. (2008). Mineralogy and geochemistry of Boehmite-Rich Coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74, 185–202. https://doi.org/10.1016/j.coal.2008.01.001

    Article  CAS  Google Scholar 

  • Dai, S., Ren, D., Chou, C. L., Finkelman, R. B., Seredin, V. V., & Zhou, Y. (2012). Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, 3–21. https://doi.org/10.1016/j.coal.2011.02.003

    Article  CAS  Google Scholar 

  • Dai, S., Seredin, V. V., Ward, C. R., Hower, J. C., Xing, Y., Zhang, W., Song, W., & Wang, P. (2015). Enrichment of U-Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineraliumdeposita, 50(2), 159–186. https://doi.org/10.1007/s00126-014-0528-1

    Article  CAS  Google Scholar 

  • Davranche, M., Grybos, M., Gruau, G., Pedrot, M., Dai, A., & Marsac, R. (2011). Rare earth element patterns: A tool for identifying trace metal sources during wetland soil reduction. Chemical Geology, 284(1–2), 127–137. https://doi.org/10.1016/j.chemgeo.2011.02.014

    Article  CAS  Google Scholar 

  • Deshmukh, G. P., & Mishra, S.P. (1971). Geological mapping in parts of Barmer and Jaisalmer districts, Rajasthan, Geological Survey of India, Unpublished Prog. Rep. F. S. (1969–1970).

  • DOE (2011). Critical materials strategy, U.S. Department of Energy, Washington, DC.

  • Dolson, J., Burley, S.D., Sunder, V.R., Kothari, V., Naidu, B., Whiteley, N.P., Farrimond, P., Taylor, A., Direen, N., & Ananthakrishnan, B. (2015). The discovery of the Barmer Basin, Rajasthan, India, and its petroleum geology. AAPG Bulletin, 99(3), 433–465 https://doi.org/10.1306/10021414045

  • Economics & Statistics Department—American Chemistry Council. (2014). The Economic Benefits of the North American Rare Earths Industry”. Rare Earth Technology Alliance.

    Google Scholar 

  • Elbaz-Poulichet, F., Seidel, J. L., Jézéquel, D., Metzger, E., Prévot, F., Simonucci, C., & Radakovitch, O. (2005). Sedimentary record of redox-sensitive elements (U, Mn, Mo) in a transitory anoxic basin (the Thau lagoon, France). Marine Chemistry, 95(3–4), 271–281. https://doi.org/10.1016/j.marchem.2004.10.001.(hal-01061569)

    Article  CAS  Google Scholar 

  • Farrimond, P., Naidu, B.S., Burley, S.D., Dolson, J., Whiteley, N., & Kothari, V. (2015). Geochemical characterization of oils and their source rocks in the Barmer Basin, Rajasthan, India. Petroleum Geoscience. 21 (4) (2015) 301–321. https://doi.org/10.1144/petgeo2014-075

  • Finkelman, R. B. (1981). Modes of occurrence of trace elements in coal. Series number: 81–99, Report, U.S. Geological Survey. https://doi.org/10.3133/ofr8199

  • Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Processing Technology, 39, 21–34. https://doi.org/10.1016/0378-3820(94)90169-4

    Article  CAS  Google Scholar 

  • Finkelman, R. B. (1999). Trace elements in coal environmental and health significance. Biological Trace Element Research, 67, 197–204. https://doi.org/10.1007/BF02784420

    Article  CAS  Google Scholar 

  • Finkelman, R. B. (2004). Potential health impacts of burning coal beds and waste banks. International Journal of Coal Geology, 59, 19–24. https://doi.org/10.1016/j.coal.2003.11.002

    Article  CAS  Google Scholar 

  • Finkelman, R. B., Belkin, H. E., & Zheng, B. (1999). Health impacts of domestic coal use in China. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3427–3431. https://doi.org/10.1073/pnas.96.7.342

    Article  CAS  Google Scholar 

  • Golev, A., Scott, M., Erskine, P. D., Ali, S. H., & Ballantyne, G. R. (2014). Rare earths supply chains: Current status, constraints and opportunities. Resources Policy, 41, 52–59. https://doi.org/10.1016/j.resourpol.2014.03.004

    Article  Google Scholar 

  • Gopinathan, P., Mohan, S. P., & Magendran, T. (2015). Structural, mineralogical and ore grades of banded iron deposits of north-western Tamil Nadu, South India—a comparative study. International Journal of Emerging Technology and Advanced Engineering, 5(3), 78–83.

    Google Scholar 

  • Gopinathan, P., Parthiban, S., Magendran, T., Al-Quraishi, A.M.F., Singh, A.K., & Singh, P.K. (2020). Mapping of ferric (Fe3+) and ferrous (Fe2+) iron oxides distribution using band ratio techniques with ASTER data and geochemistry of Kanjamalai and Godumalai, Tamil Nadu, south India, Remote Sensing Applications: Society and Environment, Volume 18. https://doi.org/10.1016/j.rsase.2020.100306

  • Gopinathan, P., Singh, A.K., Singh, P.K., Jha, M. (2022a). Sulphur in Jharia and Raniganj coalfields: chemical fractionation and its environmental implications. Environmental Research, 204 (2022d), p. 112382. https://doi.org/10.1016/j.envres.2021.112382

  • Gopinathan, P., Jha, M., Singh, A.K., Mahato, A., Subramani, T., Singh, P.K., & Singh, V. (2022b). Geochemical characteristics, origin and forms of sulphur distribution in the Talcher coalfield, India. Fuel, 316, 123376. https://doi.org/10.1016/j.fuel.2022.123376

  • Gopinathan, P., Santosh, M.S., Dileepkumar, V.G., Subramani, T., Reddy, R., Masto, R.E., & Maity, S. (2022c). Geochemical, mineralogical and toxicological characteristics of coal fly ash and its environmental impacts, Chemosphere, Volume 307, Part1, 2022c, 135710. https://doi.org/10.1016/j.chemosphere.2022.135710

  • Gopinathan, P., Roy, P., Subramani, T., & Karunanidhi, D. (2022d). Detection of iron-bearing mineral assemblages in Nainarmalai granulite region, south India, based on satellite image processing and geochemical anomalies. Environmental Monitoring and Assessment, 194, 866. https://doi.org/10.1007/s10661-022-10570-2

    Article  CAS  Google Scholar 

  • Guo, C., Wei, Y., Yan, L., Li, Z., Qian, Y., & Liu, H. (2020). Rare Earth elements exposure and the alteration of the hormones in the hypothalamic-pituitary-thyroid (hpt) axis of the residents in an e-waste site: A cross-sectional study. Chemosphere 252, 126488. https://doi.org/10.1016/j.chemosphere.2020.126488

  • Henderson, P., Gluyas, J., Gunn, G., Wall, F., Woolley, A., Finlay, A., & Bilham, N. (2011). Rare Earth Elements. A Briefing Note by the Geological Society of London.

  • Hendryx, M., Zullig, K. J., & Luo, J. (2020). Impacts of coal use on health. Annual Review of Public Health, 41(1), 437–415. https://doi.org/10.1146/annurev-publhealth-040119-094104

    Article  Google Scholar 

  • Henríquez-Hernández, L. A., Boada, L. D., Carranza, C., Perez Arellano, J. L., Gonzalez- Antuña, A., Camacho, M., Almeida-González, M., Zumbado, M., & Luzardo, O. P. (2017). Blood levels of toxic metals and rare earth elements commonly found in e-waste may exert subtle effects on hemoglobin concentration in sub-Saharan immigrants. Environment International, 109, 20–28. https://doi.org/10.1016/j.envint.2017.08.023

    Article  CAS  Google Scholar 

  • Hower, J. C., Eble, C. F., & Pierce, B. S. (1996). Petrography, geochemistry and palynology of the Stockton coal bed (Middle Pennsylvanian), Martin County, Kentucky. The International Journal of Coal Geology, 1996(31), 195–215. https://doi.org/10.1016/S0166-5162(96)00017-1

    Article  Google Scholar 

  • Hu, G., Dam-Johansen, K., Wedel, S., & Hansen, J. P. (2006). Decomposition and oxidation of pyrite. Progress in Energy and Combustion Science, 32, 295–314. https://doi.org/10.1016/j.pecs.2005.11.004

    Article  CAS  Google Scholar 

  • Huggins, F. E., & Huffman, G. P. (1996). Modes of occurrence of trace elements in coal from XAFS spectroscopy. International Journal of Coal Geology, 32(1–4), 31–53. https://doi.org/10.1016/S0166-5162(96)00029-8

    Article  CAS  Google Scholar 

  • Indian Minerals Yearbook (2021). Indian Bureau of Mines.

  • Izyumov, A., & Plaksin, G. (2013). In cerium: Molecular structure, technological applications and health effects. Nova Science Publishers.

    Google Scholar 

  • Jasper, K., Hartkopf-Froder, C., Flajs, G., & Littke, R. (2010). Evolution of Pennsylvanian (Late Carboniferous) peat swamps of the Ruhr Basin, Germany: Comparison of palynological, coal petrographical and organic geochemical data. The International Journal of Coal Geology, 83, 346–365. https://doi.org/10.1016/j.coal.2010.05.008

    Article  CAS  Google Scholar 

  • Jordens, A., Cheng, Y. P., & Walters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/10.1016/j.mineng.2012.10.017

    Article  CAS  Google Scholar 

  • Kanazawa, Y., & Kamitani, M. (2006). Rare earth minerals and resources in the world. The Journal of Alloys and Compounds, 408–412, 1339–1343. https://doi.org/10.1016/j.jallcom.2005.04.033

    Article  CAS  Google Scholar 

  • Kanchan, S., Kumar, V., Yadav, K., Gupta, N., Arya, S., & Sharma, S. (2015). Effect of fly ash disposal on ground water quality near Parichha thermal power plant, Jhansi: A case study. Current World Environment 10, 572–580. https://doi.org/10.12944/CWE.10.2.21

  • Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of Clarkes for carbonaceous biolithes: World average for trace element content in black shales and coals. International Journal of Coal Geology, 78(2), 135–148. https://doi.org/10.1016/j.coal.2009.01.002

    Article  CAS  Google Scholar 

  • Kumar, A., Singh, A.K., Singh, P.K., Singh, A.L., Saikia, B.K., & Kumar, A. (2019). Desulfurization of Giral lignite of Rajasthan (Western India) using Burkholderia sp. GR 8–02. International Journal of Coal Preparation. https://doi.org/10.1080/19392699.2019.1651721.

  • Kyung-Taek, R. (2016). Effects of rare earth elements on the environment and human health: A literature review. Toxicology and Environmental Health Sciences, 8, 189–200. https://doi.org/10.1007/s13530-016-0276-y

    Article  Google Scholar 

  • Lee, S., Roh, Y., & Koh, D. C. (2019). Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: A review. Chemosphere, 220, 86–97. https://doi.org/10.1016/j.chemosphere.2018.11.143. Epub 2018 Nov 28 PMID: 30579952.

    Article  CAS  Google Scholar 

  • Lindholm, R.C. (1987). Mineral identification using X-ray diffraction. In: A Practical Approach to Sedimentology. Springer. https://doi.org/10.1007/978-94-011-7683-5_6

  • Ling, Y.-Y., Zhang, J.-J., Liu, K., Ge, M.-H., Wang, M., & Wang, J.-M. (2017). Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault region, northeast China. Journal of Asian Earth Sciences, 144, 303–322. https://doi.org/10.1016/j.jseaes.2016.12.025

    Article  Google Scholar 

  • Liu, Y., Liu, G., & Qu, Q. (2017). Geochemistry of vanadium (V) in Chinese coals. Environmental Geochemistry and Health, 39, 967–986. https://doi.org/10.1007/s10653-016-9877-2

    Article  CAS  Google Scholar 

  • Löwemark, L., Chen, H. F., Yang, T. N., Kylander, M., Yu, E. F., Hsu, Y. W., & Jarvis, S. (2011). Normalizing XRFscanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40, 1250–1256.

    Article  Google Scholar 

  • Martinez-Tarazona, M. R., Spears, D. A., & Tascon, J. M. D. (1992). Organic affinity of trace elements in Asturian bituminous coals. Fuel, 71, 909–917. https://doi.org/10.1016/0016-2361(92)90241-F

    Article  CAS  Google Scholar 

  • Mastalerz, M., & Drobniak, A. (2007). Arsenic, cadmium, lead, and zinc in the Danville and Springfield coal members (Pennsylvanian) from Indiana. International Journal of Coal Geology, 71(1), 37–53. https://doi.org/10.1016/j.coal.2006.05.005

    Article  CAS  Google Scholar 

  • Matjie, R. H., French, D., Ward, C. R., Pistorius, P. C., & Li, Z. (2011). Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process. Fuel Processing Technology, 92, 1426–1433. https://doi.org/10.1016/j.fuproc.2011.03.002

    Article  CAS  Google Scholar 

  • Matjie, R. H., Li, Z., Ward, C. R., Kosasi, J., Bunt, J. R., & Strydom, C. A. (2015). Mineralogy of furnace deposits produced by South African coals during pulverized-fuel combustion tests. Energy & Fuels, 2015(29), 8226–8238. https://doi.org/10.1021/acs.energyfuels.5b00972

    Article  CAS  Google Scholar 

  • Morford, J. L., & Emerson, S. (1999). The geochemistry of redox sensitive trace metals in sediments. Geochimica Et Cosmochimica Acta, 63, 1735–1750. https://doi.org/10.1016/S0016-7037(99)00126-X

    Article  CAS  Google Scholar 

  • Oldham, R. D. (1886). Preliminary note on the geology of Northern Jaisalmer Rec. Geological Survey of India, 19, 157–159.

    Google Scholar 

  • Palmer, M.A., Bernhardt, E.S., Schlesinger, W.H., Eshleman, K.N., Foufoula-Georgiou, E., Hendryx, M.S., Lemly, A.D., Likens, G.E., Loucks, O.L., Power, M.E., White, P.S., & Wilcock, P.R. (2010). Science and regulation. Mountaintop mining consequences. Science, 327 (5962):148–9. https://doi.org/10.1126/science.1180543

  • Pecht, M.G., Kaczmarek, R.E., Song, X., Hazelwood, D.A., Kavetsky, R.A., & Anand, D.K. (2012). Rare earth materials: insights and concerns. CALCE EPSC Press: University of Maryland, College Park.

  • Pedrot, M., Dai, A., & Davranche, M. (2010). Dynamic structure of humic substances: Rare earth elements as a fingerprint. The Journal of Colloid and Interface Science., 345(2), 206–213. https://doi.org/10.1016/j.jcis.2010.01.069

    Article  CAS  Google Scholar 

  • Peng, R. L., Pan, X. C., & Xie, Q. (2003). Relationship of the hair content of rare earth elements in young children aged 0 to 3 years to that in their mothers living in a rare earth mining area of Jiangxi. Zhonghua Yu Fang Yi XueZaZhi, 37, 20–22.

    CAS  Google Scholar 

  • Pinetown, K. L., Ward, C. R., & van der Westhuizen, W. A. (2007). Quantitative evaluation of minerals in coal deposits in the Witbank and Highveld Coalfields and the potential impact on acid mine drain-age. The International Journal of Coal Geology, 70, 166–183. https://doi.org/10.1016/j.coal.2006.02.013

    Article  CAS  Google Scholar 

  • Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72. https://doi.org/10.1016/j.coal.2004.04.003

    Article  CAS  Google Scholar 

  • Prachiti, P. K., Manikyamba, C., Singh, P. K., Balaram, V., Lakshminarayana, G., Raju, K., Singh, M. P., Kalpana, M. S., & Arora, M. (2011). Geochemical systematics and precious metal content of the sedimentary horizons of Lower Gondwanas from the Sattupalli coal field, GodavariValley, India. International Journal of Coal Geology, 88, 83–100. https://doi.org/10.1016/j.coal.2011.08.005

    Article  CAS  Google Scholar 

  • Pushkar, B., Sevak, P., Parab, S., & Nilkanth, N. (2021). Chromium pollution and its bioremediation mechanisms in bacteria: A review. Journal of Environmental Management, 287, 112279. https://doi.org/10.1016/j.jenvman.2021.112279.

  • Rajak, P.K., Singh, V.K., Singh, A.L., Kumar, N., Kumar, O.P., Singh, V., Kumar, A., Rai, A., Rai, S., Naik, A.S., & Singh, P.K. (2019). Study of minerals and selected environmentally sensitive elements in Kapurdilignites of Barmer Basin, Rajasthan, western India: implications to environment. Geosciences Journal , 24 , 441–458 (2020). https://doi.org/10.1007/s12303-019-0029-4

  • Rajak, P. K., Singh, V. K., Singh, P. K., Singh, A. L., Kumar, N., Kumar, O. P., Singh, V., & Kumar, A. (2018). Geochemical implications of minerals and environmentally sensitive elements of Giral lignite, Barmer basin, Rajasthan (India). Environmental Earth Science, 77, 698. https://doi.org/10.1007/s12665-018-7885-5

    Article  CAS  Google Scholar 

  • Rajak, P. K., Singh, V. K., Kumar, A., Singh, V., Rai, A., Rai, S., Singh, K. N., Sharma, M., Naik, A. S., Mathur, N., & Singh, P. K. (2021). Study of hydrocarbon source potential of KapurdiLignites of Barmer Basin, Rajasthan, Western India. Journal of the Geological Society of India, 97, 836–842. https://doi.org/10.1007/s12594-021-1782-3

    Article  CAS  Google Scholar 

  • Rajkumari, P., & Prasad Guntupalli, V. R. (2020). New chondrichthyan fauna from the Palaeogene deposits of Barmer district, Rajasthan, western India: Age, palaeo-environment and intercontinental affinities. Geobios, 58, 55–72. https://doi.org/10.1016/j.geobios.2019.11.002

    Article  Google Scholar 

  • Riley, K. W., French, D. H., Farrell, O. P., Wood, R. A., & Huggins, F. E. (2012). Modes of occurrence of trace and minor elements in some Australian coals. International Journal of Coal Geology, 94, 214–224. https://doi.org/10.1016/j.coal.2011.06.011

    Article  CAS  Google Scholar 

  • Roper, A. R., Stabin, M. G., Delapp, R. C., & Kosson, D. S. (2013). Analysis of naturally-occurring radionuclides in coal combustion fly ash, gypsum, and scrubber residue samples. Health Physics, 104(3), 264–269. https://doi.org/10.1097/HP.0b013e318279f3bf

    Article  CAS  Google Scholar 

  • Roy, A.B., & Jakhar, S.R. (2002). Geology of Rajasthan (Northwest India) Precambrian to Recent. Scientific Publishers (India), Jodhpur, 1–421.

  • Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., Deonarine, A., Bergin, M., & Kravchenko, J. (2009). Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee. Environmental Science and Technology, 43, 6326–6333. https://doi.org/10.1021/es900714p

    Article  CAS  Google Scholar 

  • Saha, C., Konar, S., Bora, A.K., Kumar, P., Dhanasetty, A., Majumdar, P., & Shankar, P. (2021). Multidisciplinary approach in tight oil appraisal: a case study from Barmer Basin, India. In: Adapted from oral presentation given at 2018 International Conference and Exhibition, Cape Town, South Africa, November 4–7, 2018. https://doi.org/10.1306/11173Saha2018

  • Saikia, B. K., Boruah, R. K., Gogoi, P. K., & Baruah, B. P. (2009). A thermal Investigation on Coals from Assam (India). Fuel Processing and Technology, 2009(90), 196–203. https://doi.org/10.1016/j.fuproc.2008.09.007

    Article  CAS  Google Scholar 

  • Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. The International Journal of Coal Geology, 94, 67–93. https://doi.org/10.1016/j.coal.2011.11.001

    Article  CAS  Google Scholar 

  • Seredin, V., Shpirt, M., & Vassyanovich, A. (1999). REE contents and distribution in humic matter of REE-rich coals. In: Stanley, C.J. (Ed) Mineral Deposits: Processes to Processing. A.A. Balkema, pp. 267–269.

  • Sharma, K. K. (2004). The Neo-proterozoic Malani magmatism of the north-western Indian shield: Implications for crust-building processes. Proceedings of the Indian Academy of Sciences (earth and Planetary Sciences), 113, 795–807.

    CAS  Google Scholar 

  • Singh, A. K., Kumar, A., & Tripathi, J. K. (2019). Mineralogical characteristics of low-rank coal from Nagaur, Rajasthan, India and their implication for the environment of paleomire. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2019.1632983

    Article  Google Scholar 

  • Singh, M.P., Singh, R.M., & Chandra, D. (1985). Environmental and health problems due to geochemical alterations associated with trace elements in coals, Ghugus coalfield. Wardha Valley, Maharashtra. Q. J. Geol. Min. Metall. Soc. India, 57:99 and 103.

  • Stanley, J. A., Sivakumar, K. K., Arosh, J. A., Burghardt, R. C., & Banu, S. K. (2014). Edaravone mitigates hexavalent chromium-induced oxidative stress and depletion of antioxidant enzymes while estrogen restores antioxidant enzymes in the rat ovary in F1 offspring. Biology of Reproduction, 91(1), 1–12. https://doi.org/10.1095/biolreprod.113.113332

    Article  CAS  Google Scholar 

  • Singh, N. P. (2006). Mesozoic lithostratigraphy of the Jaisalmer Basin, Rajasthan. Journal of the Palaeontological Society of India, 51(2), 1–25.

    Google Scholar 

  • Singh, P. K. (2004). Mineralogy and Geochemistry of Lalmatia coal seams, Hura coalfield, Rajmahal basin, Jharkhand, India. Journal of Applied Geochemistry, 6(1), 45–60.

    Google Scholar 

  • Singh, V. K., Bikundia, D. S., Sarswat, A., & Mohan, D. (2012). Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India. Environmental Monitoring and Assessment, 184, 4473–4488. https://doi.org/10.1007/s10661-011-2279-0

    Article  CAS  Google Scholar 

  • Sisodia, M.S., Singh, U.K., Lashkari, G., Shukla, P.N., Shukla, A.D., & Bhandari, N. (2005). Mineralogy and trace element chemistry of the siliceous earth of Barmer basin, Rajasthan: Evidence for a volcanic origin. The Journal of Earth System Science 114, 111–124 (2005). https://doi.org/10.1007/BF02702014

  • Sisodia, M. S., & Singh, U. K. (2000). Depositional environment and hydrocarbon prospects of the Barmer Basin, Rajasthan, India. Nafta Zagreb (croatia), 51(9), 309–326.

    CAS  Google Scholar 

  • Suárez-Ruiz, I., Flores, D., Marques, M. M., Martinez-Tarazona, M. R., Pis, J., & Rubiera, F. (2006). Geochemistry and mineralogy of coals from Rio Major (Portugal) and Peñar-roya (Spain) Basins: Technological implications. International Journal of Coal Geology, 67(3), 171–190. https://doi.org/10.1016/J.COAL.2005.11.004

    Article  Google Scholar 

  • Sushil, S., & Batra, V. S. (2006). Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85, 2676–2679. https://doi.org/10.1016/j.fuel.2006.04.031

    Article  CAS  Google Scholar 

  • Swaine, D.J. (1990). Trace elements in coal. Butterworth and Co. (Publishers) Ltd., London, 278 p.

  • Tabaei, M., & Singh, R. Y. (2000). Paleoenvironment and paleoecological significance of micro foraminiferal linings in the Akali lignite, Barmer basin, Rajasthan, India (Abstract), No. 61, Paleonology, NSW. Geol. Soc. Australia Abstracts, 61, 108–108.

  • Taggart Jr., J.E., Lindsay, J.R., Scott, B.A., Vivit, D.V., Bartel, A.J., & Stewart, K.C. (1987). Analysis of geologic materials by wavelength-dispersive X-ray fluorescence spectrometry. In P.A. Baedecker (Ed.), Methods for geochemical analysis. Denver, CO: US Geological Survey Bulletin 1770.

  • Tang, Q., Zhang, H., & Zhao, X. (2022). Chromium in Chinese coals: geochemistry and environmental impacts associated with coal-fired power plants. Environmental Geochemistry and Health (2022). https://doi.org/10.1007/s10653-022-01337-2

  • Tang, Y. G., Chang, C. X., Zhang, Y. Z., & Li, W. W. (2009). Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan Coalfield, Hebei Province, China. Energy Exploration & Exploitation, 27(2), 143–152.

    Article  CAS  Google Scholar 

  • Tolosana-Delgado, R., & McKinley, J. (2016). Exploring the joint compositional variability of major components and trace elements in the Tellus soil geochemistry survey (Northern Ireland). Applied Geochemistry, 75, 263–276.

    Article  CAS  Google Scholar 

  • Tong, L., Yan, J., & Tang, X. (2004a). The characteristics of distribution of trace elements in coal from Huainan. Mining Safety and Environmental Protection, 31, 94–96. (in Chinese).

    Google Scholar 

  • Tong, S. L., Zhu, W. Z., Gao, Z. H., Meng, Y. X., Peng, R. L., & Lu, G. C. (2004b). Distribution characteristics of rare earth elements in children's scalp hair from a rare earths mining area in Southern China. Journal of Environmental Science and Health, Part a: Toxic/hazardous Substances and Environmental Engineering, 39(9), 2517–2532. https://doi.org/10.1081/ESE-200026332

    Article  CAS  Google Scholar 

  • Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012

    Article  CAS  Google Scholar 

  • Tripathi, S.K.M., Kumar, M., & Srivastava, D. (2009). Palynology of Lower Palaeogene (Thanetian-Ypresian) coastal deposits from the Barmer Basin (Akli Formation, Western Rajasthan, India): Palaeoenvironmental and palaeoclimatic implications. GeologicaActa; Vol.: 7 Núm: 1–2 Climate and biota of the early Paleogene: recent advances and new perspectives. 7. https://doi.org/10.1344/105.000000275.

  • Trump, D. (2018). A federal strategy to ensure secure and reliable supplies of critical minerals. Donald Trump, Washington, DC. Accessed Apr. 3, 2018, https://www.doi.gov/sites/doi.gov/files/uploads/2017minerals.eo_.pdf

  • U.S. Department of Energy (2011). Critical Materials Strategy; U.S. Department of Energy: Washington, DC, USA.

  • Vassileva, C. G., & Vassilev, S. V. (2006). Behaviour of inorganic matter during heating of Bulgarian coals 2. Subbituminous and bituminous coals. Fuel Processing and Technology, 87, 1095−1116. https://doi.org/10.1016/j.fuproc.2006.08.006

  • Vesper, D. J., Roy, M., & Rhoads, C. J. (2008). Selenium distribution and mode of occurrence in the Kanawha Formation, southern West Virginia, USA. International Journal of Coal Geology, 73(3–4), 237–249. https://doi.org/10.1016/j.coal.2007.06.003

    Article  CAS  Google Scholar 

  • Wang, W., Qin, Y., Song, D., & Wang, K. (2008). Column leaching of coal and its combustion residues, Shizuishan, China. International Journal of Coal Geology, 2008(75), 81–87. https://doi.org/10.1016/j.coal.2008.02.004

    Article  CAS  Google Scholar 

  • Wang, X. B., Dai, S. F., Ren, D. Y., & Yang, J. Y. (2011). Mineralogy and geochemistry of Al-hydroxide-oxy-hydroxide mineral-bearing coals of Late Paleozoic age from the Weibei coalfield, south eastern Ordos Basin, North China. Applied Geochemistry, 26, 1086–1096.

    Article  Google Scholar 

  • Ward, C. R. (2002). Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology, 50, 135–168. https://doi.org/10.1016/S0166-5162(02)00117-9

    Article  CAS  Google Scholar 

  • Ward, C. R., Spears, D. A., Booth, C. A., Staton, I., & Gurba, L. W. (1999). Mineral matter and trace elements in coals of the Gunnedah Basin, New South Wales, Australia. The International Journal of Coal Geology, 40(4), 281–308. https://doi.org/10.1016/S0166-5162(99)00006-3

    Article  CAS  Google Scholar 

  • Weltje, G. J., & Tjallingii, R. (2008). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet Science Letters, 274(3–4), 423–438.

    Article  CAS  Google Scholar 

  • Wertz, D. L. (1990). X-ray analysis of the Argonne premium coals: 1.Use of Absorption/diffraction Methods. Energy Fuels, 4, 442–447. https://doi.org/10.1021/ef00023a006

    Article  CAS  Google Scholar 

  • Wolfe, A.L., Wilkin, R.T., Lee, T.R., Ruybal, C.J., & Oberley, G.G. (2015). Retrospective Case Study in the Raton Basin, Colorado: Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources U.S. Environmental Protection Agency, Washington, DC (2015), p. 713 U.S. EPA Report, EPA 600/R-14/091

  • Wüst, R., Bustin, R. M., & Ross, J. (2008). Neo-mineral formation during artificial coalification of low-ash—mineral free-peat material from tropical Malaysia-potential explanation for low ash coals. The International Journal of Coal Geology, 74, 114–122. https://doi.org/10.1016/j.coal.2007.11.004

    Article  CAS  Google Scholar 

  • Xiong, Z., Li, T., Algeo, T., Chang, F., Yin, X., & Xu, Z. (2012). Rare earth element geochemistry of laminated diatom mats from tropical West Pacific: Evidence for more reducing bottom waters and higher primary productivity during the Last Glacial Maximum. Chemical Geology, 296–297(2012), 103–118. https://doi.org/10.1016/j.chemgeo.2011.12.012

    Article  CAS  Google Scholar 

  • Yossifova, M. G., Eskenazy, G. M., & Valčeva, S. P. (2011). Petrology, mineralogy, and geochemistry of submarine coals and Petrified Forest in the Sozopol Bay, Bulgaria. International Journal of Coal Geology, 87, 212–225. https://doi.org/10.1016/j.coal.2011.06.013

    Article  CAS  Google Scholar 

  • Zhao, C. L., Sun, Y. Z., Xiao, L., Qin, S. J., Wang, J. X., & Duan, D. J. (2014). The occurrence of barium in Jurassic coal in the Huangling 2 mine, Ordos Basin, northern China. Fuel, 128(2014), 428–432. https://doi.org/10.1016/j.fuel.2014.03.040

    Article  CAS  Google Scholar 

  • Zhao, L., Ward, C. R., French, D., & Graham, I. T. (2015). Major and trace element geochemistry of coals and intra-seam claystones from the Songzao Coalfield, SW China. Minerals, 5(4), 870–893. https://doi.org/10.3390/min5040531

    Article  CAS  Google Scholar 

  • Zhou, J. B., Zhuang, X. G., Alastuey, A., Querol, X., & Li, J. D. (2010). Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China. International Journal of Coal Geology, 82, 51–67.

    Article  CAS  Google Scholar 

  • Zhuang, X. G., Querol, X., Plana, F., Alastuey, A., Angel, L. S., & Wang, H. (2003). Determination of elemental affinities by density fractionation of bulk coal samples from the Chongqing coal district, Southwestern China. International Journal of Coal Geology, 55, 103–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the Director of CSIR-Central Institute of Mining & Fuel Research (CSIR-CIMFR), Dhanbad, as well as the Head of the Department of Geology at Banaras Hindu University for their support and facilities during the research work. Additionally, Om Prakash Kumar would like to express their gratitude to the Council for Scientific and Industrial Research (CSIR), Govt. of India, New Delhi, for granting the Senior Research Fellowship (File No—09/013(0599)2015-EMR-1). The authors would also like to thank Rajasthan State Mines and Minerals Limited (RSMML) and Barmer Lignite Mining Company Limited (BLMCL) for their assistance in sample collection during the fieldwork.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

OPK: Formulation, Sampling, Sample processing, Data organization, Analysis of results, composing a manuscript.  PG: Formulation, Sample processing, Data organization, Interpretation of results, composing a manuscript.  ASN: Formulation, Sampling, Sample processing, Data organization, Interpretation of results, composing a manuscript.  TS: Peer-review, Editing and Redrafting.  PKS: Peer-review, Editing and Redrafting.  AS: ICP-MS Analysis.  SS: XRF Analysis.  SM: XRD Analysis

Corresponding authors

Correspondence to P. Gopinathan or Amiya S. Naik.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, O.P., Gopinathan, P., Naik, A.S. et al. Characterization of lignite deposits of Barmer Basin, Rajasthan: insights from mineralogical and elemental analysis. Environ Geochem Health 45, 6471–6493 (2023). https://doi.org/10.1007/s10653-023-01649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01649-x

Keywords

Navigation