Skip to main content

Advertisement

Log in

Contamination and risk surveillance of potentially toxic elements in different land-use urban soils of Osogbo, Southwestern Nigeria

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The concentrations of potentially toxic elements (PTEs) and their contamination indices were determined in urban soil from five different land-use zones, namely municipal solid waste landfill (MWL), industrial area (INA), heavy traffic area (TRA), residential area with commercial activities (RCA), and farmland (FAL) in Osogbo Metropolis. Ecological and human health risk assessments were also evaluated. Based on the average concentrations, the highest values of As, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were found at INA, while the maximum concentrations of Ba, Cd, and Co were observed at MWL. The average enrichment factor (EF) values of Cd, Cu, Pb, and Zn showed very high to extremely high enrichment in the soils of INA, MWL, TRA, and RCA, while the EF values of Ba, Co, Cr, Fe, Ni, and V were significantly to moderately enriched in the aforementioned land-use zones. This trend was consistent with the average contamination factor (Cf) values of Cd, Cu, Pb, and Zn, which indicated considerable to very high contamination at INA, MWL, TRA, and RCA. However, Cf values of Ba, Co, Cr, Fe, Ni, and V had moderate contamination variously at the different land-use zones. Furthermore, the potential ecological risk factor (Eri) values for all the PTEs were < 40, which indicated low Eri, except for Cd and to some extent Pb. The Eri value of Cd was high to very high at MWL, INA, TRA, and RCA, and low at FAL, while Eri of Pb was only moderate at INA. Assessment of health quotient (HQ) of non-carcinogenic health risks was within acceptable limit (< 1) for most of the PTEs in the different zones for adults and children, except the maximum HQ value of Pb at INA (HQ = 1.0), which was beyond the acceptable limit for children. The carcinogenic risk was within the acceptable limit (1.0 × 10−6) in all the zones, except INA. This may pose health challenges to children in the vicinity of the pollution sources. Continuous monitoring of PTEs to reduce exposure to PTE should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

All inquiries on data availability to be sent to tesleem.kolawole@uniosun.edu.ng.

References

  • Abdelhafez, A. A., & Li, J. (2014). Environmental monitoring of heavy metal status and human health risk assessment in the agricultural soils of the Jinxi River area, China. Human and Ecological Risk Assessment: an International Journal. https://doi.org/10.1080/10807039.2014.947851

    Article  Google Scholar 

  • Aboubakar, A., Douaik, A., Mewouo, Y. C. M., Madong, R. C. B. A., Dahchour, A., & El Hajjaji, S. (2021). Determination of background values and assessment of pollution and ecological risk of heavy metals in urban agricultural soils of Yaoundé, Cameroon. Journal of Soils and Sediments, 21, 1437–1454.

    CAS  Google Scholar 

  • Ademola, A. K., Olaoye, M. A., & Abodunrin, P. O. (2015). Radiological safety assessment and determination of heavy metals in soil samples from some waste dumpsites in Lagos and Ogun State, south-western, Nigeria. Journal of Radiation Research and Applied Sciences, 8, 148–153.

    CAS  Google Scholar 

  • Adedeji O. H, Olayinka O.O., Tope-Ajayi O.O., Adekoya A.S., (2020). Assessing spatial distribution, potential ecological and human health risks of soil heavy metals contamination around a Trailer Park in Nigeria. Scientific African, 10(2020) e00650.

  • Adimalla, N., & Wang, H. (2018). Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana India. Arabian Journal of Geosciences, 11(21), 684. https://doi.org/10.1007/s12517-018-4028-y

    Article  CAS  Google Scholar 

  • Afolagboye, L. O., Ojo, A. A., Talabi, A. O., & Ahmad, H. R. (2020). Evaluation of soil contamination status around a municipal waste dumpsite using contamination indices, soil-quality guidelines, and multivariate statistical analysis. SN Applied Sciences, 2, 1864.

    CAS  Google Scholar 

  • Agyeman, P. C., John, K., Kebonye, N. M., Borůvka, L., & Vašát, R. (2022). Combination of enrichment factor and positive matrix factorization in the estimation of potentially toxic element source distribution in agricultural soil. Environmental Geochemistry and Health, 1–27.

  • Agyeman, P. C., Ahado, S. K., John, K., Kebonye, N. M., Vašát, R., Borůvka, L., & Němeček, K. (2021c). Health risk assessment and the application of CF-PMF: A pollution assessment–based receptor model in an urban soil. Journal of Soils and Sediments, 21(9), 3117–3136.

    CAS  Google Scholar 

  • Agyeman, P. C., Ahado, S. K., Kingsley, J., Kebonye, N. M., Biney, J. K. M., Borůvka, L., Vasat, R., & Kocarek, M. (2021a). Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environmental Geochemistry and Health, 43(1), 601–620. https://doi.org/10.1007/s10653-020-00743-8

    Article  CAS  Google Scholar 

  • Agyeman, P. C., John, K., Kebonye, N. M., Borůvka, L., Vašát, R., Drábek, O., & Němeček, K. (2021b). Human health risk exposure and ecological risk assessment of potentially toxic element pollution in agricultural soils in the district of Frydek Mistek, Czech republic: A sample location approach. Environmental Sciences Europe, 33(1), 1–25.

    Google Scholar 

  • Ahemad, M. (2012). Implications of bacterial resistance against heavy metals in bioremediation: A Review. Institute of Integrative Omics and Applied Biotechnology Journal, 3(3), 39–46.

    CAS  Google Scholar 

  • Ahmad H. M, Mehmood K., Sardar M. F., Maqsood M. A., Ur Rehman M. Z., Zhu C., Li H. (2019). Integrated risk assessment of potentially toxic elements and particle pollution in urban road dust of megacity of Pakistan. Hum. Ecol. Risk. Assess. https://doi.org/10.1080/10807039.2019.1611415.

  • Ajani, M. B., Maleka, P. P., Penabei, S., & Usman, I. T. (2022). Health risk assessment of heavy metals concentration from soil; a case study of the Mayo-Dallah in Southern area of Chad. Journal of Radiation Research and Applied Sciences, 15, 130–138.

    CAS  Google Scholar 

  • Ajayi T. R., (1981). Statistical analysis of stream sediment data from the Ife-Ilesha area of southwest Nigeria. Journal of Geochemical Exploration, 15 539–548.

  • Alharbi, B. H., Pasha, M. J., & Al-Shams, M. A. S. (2019). Influence of different Urban structures on metal contamination in two Metropolitan cities. Scientific Reports, 9, 4920.

    Google Scholar 

  • An, S., Liu, N., Li, X., Zeng, S., Wang, X., & Wang, D. (2022). Understanding heavy metal accumulation in roadside soils along major roads in the Tibet Plateau. Science of the Total Environment, 802, 149865.

    CAS  Google Scholar 

  • Anifowose, A. J., Salawudeen, C., Osundiya, F. O., Adelele, A. E., Awojide, S. H., & Kolawole, T. O. (2022). Estimation of health risk to humans and source identification of heavy metals in a perennial riveracross the Osogbo Metropolis, Nigeria. Environmental Sustainability,1–14. https://doi.org/10.1007/s42398-022-00256-3

  • Apanpa-Qasim, A. F. I., Adeyi, A. A., Mudliar, S. N., Raghunathan, K., & Thawale, P. (2016). Examination of lead and cadmium in water-based paints marketed in Nigeria. Journal of Health and Pollution, 6(12), 43–49.

    Google Scholar 

  • Armid, A., Shinjo, R., Zaeni, A., Sani, A., & Ruslan, R. (2014). The distribution of heavy metals including Pb, Cd and Cr in Kendar Bay surficial sediments. Marine Pollution Bulletin, 84, 373–378.

    CAS  Google Scholar 

  • Baltas, H., Sirin, M., Gokbayrak, E., & Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province Turkey. Chemosphere, 241, 125015.

    CAS  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105.

    CAS  Google Scholar 

  • Barbosa, F., Jr. (2017). Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. Journal of Toxicology and Environmental Health, Part A, 80, 137–144.

    CAS  Google Scholar 

  • Borůvka, L., Vacek, O., & Jehlička, J. (2005). Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128, 289–300. https://doi.org/10.1016/j.geoderma.2005.04.010

    Article  CAS  Google Scholar 

  • Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187, 1–14.

    Google Scholar 

  • Breuste, J., Artmann, M., Li, J., & Xie, M. (2015). Special issue on green infrastructure for urban sustainability. Journal of Urban Planning and Development, 141, A2015001.

    Google Scholar 

  • Bullock, P., & Gregory, P. J. (2009). Soils: A neglected resource in urban areas. In P. Bullock & P. J. Gregory (Eds.), Soils in the Urban Environment (pp. 1–4). Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  • Čakmak, D., Perović, V., Antić-Mladenović, S., Kresović, M., Saljnikov, E., Mitrović, M., & Pavlović, P. (2018). Contamination, risk, and source apportionment of potentially toxic microelements in river sediments and soil after extreme flooding in the Kolubara River catchment in Western Serbia. Journal of Soils and Sediments, 18, 1981–1993. https://doi.org/10.1007/s11368-017-1904-0

    Article  CAS  Google Scholar 

  • Čakmak, D., Perović, V., Kresović, M., Pavlović, D., Pavlović, M., Mitrović, M., & Pavlović, P. (2020). Sources and a health risk assessment of potentially toxic elements in dust at children’s playgrounds with artificial surfaces: A case studyin belgrade. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-019-00702-0

    Article  Google Scholar 

  • Cal/EPA (1993). Reference Exposure Levels (RELs) reported in CAPCOA ) CAPCOA. The CAPCOA Air Toxics Hot SpotsProgram; Revised 1992; Risk Assessment Guidelines, California Air Pollution Control Officer’s Association.

  • Cheng, H., Li, L., Zhao, C., Li, K., Peng, M., Qin, A., & Cheng, X. (2014). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 139, 31–52.

    CAS  Google Scholar 

  • Clifford, M. J. (2017). Assessing releases of mercury from small-scale gold mining sites in Ghana. The Extractive Industries and Society. https://doi.org/10.1016/j.exis.2017.05.007

    Article  Google Scholar 

  • Costa, M. (2000). Chromium and nickel. In R. K. Zalups & J. Koropatnick (Eds.), Molecular biology and toxicology of metals (pp. 113–114). Great Britain: Taylor and Francis.

    Google Scholar 

  • Das, B., Prakash, S., Reddy, P. S., Biswal, S. K., Mohapatra, B. K., & Misra, V. N. (2002). Effective utilization of blast furnace flue dust of integrated steel plants. European Journal of Mineral Processing and Environmental Protection, 2, 61–68.

    CAS  Google Scholar 

  • De Silva, S., Ball, A. S., Indrapala, D. V., & Reichman, S. M. (2021). Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. Chemosphere, 263, 128135.

    Google Scholar 

  • Dragović, R., Gajić, B., Dragović, S., Djordević, M., Djordević, M., Mihailović, N., & Onjia, A. (2014). Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia). Journal of Cleaner Production, 84, 1–13.

    Google Scholar 

  • Duodu, G. O., Goonetilleke, A. G., Ayoko A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution, 1–15.

  • Fakayode, S. O., & Olu-Owolabi, B. L. (2003). Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: Its relationship to traffic density and proximity to highways. Environmental Geology, 44, 150–157.

    CAS  Google Scholar 

  • Fomba, K. W., van Pinxteren, D., Muller, K., Spindler, G., & Herrmann, H. (2018). Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmospheric Environment, 176, 60–70. https://doi.org/10.1016/j.atmosenv.2017.12.024

    Article  CAS  Google Scholar 

  • Gawlik, B. W., & Bidoglio, G. (2006). Background values in European soils and Sewage sludges PART III, conclusions, comments and recommendations; European commission, directorate—general joint research centre. Institute for Environment and Sustainability.

    Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control A Sedimentological Approach. Water Research, 14(8), 975–1001.

    Google Scholar 

  • Han, Y. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an Cent, China. Science of the Total Environment, 355, 176–186.

    CAS  Google Scholar 

  • Hussain, J., Husain, I., Arif, M., & Gupta, N. (2017). Studies on heavy metal contamination in Godavari river basin. Applied Water Science, 7(8), 4539–4548.

    CAS  Google Scholar 

  • Hu, B., Shao, S., Fu, T., Fu, Z., Zhou, Y., Li, Y., & Shi, Z. (2020). Composite assessment of human health risk from potentially toxic elements through multiple exposure routes: A case study in farmland in an important industrial city in East China. Journal of Geochemical Exploration, 210, 106443.

  • Islam, M. S., Ahmed, M. K., & Al-Mamun, M. H. (2017). Heavy metals in sediment and their accumulation in commonly consumed fish species in Bangladesh. Archives of Environmental & Occupational Health, 72(1), 26–38.

    CAS  Google Scholar 

  • Jia, Z., Li, S., & Wang, L. (2018). Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Scientific Reports, 8, 3256.

    Google Scholar 

  • Jiboye, A. D. (2014). Significance of house-type as a determinant of residential quality in Osogbo, Southwest Nigeria. Frontiers of Architectural Research, 3, 20–27.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils (3rd ed., p. 413). CRC Press.

    Google Scholar 

  • Katana, C., Jane, M., & Harun, M. (2013). Speciation of chromium and nickel in open-air automobile mechanic workshop soils in Ngara, Nairobi, Kenya. World Environment, 3, 143–154.

    Google Scholar 

  • Kebonye, N. M., Eze, P. N., John, K., Agyeman, P. C., Němeček, K., & Borůvka, L. (2022). An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic). Environmental Geochemistry and Health, 44(2), 369–385.

    CAS  Google Scholar 

  • Keshavarzi, B., Moore, F., Ansari, M., Mehr, M. R., Kaabi, H., & Kermani, M. (2015). Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran. Environmental Monitoring and Assessment, 187(1), 4113. https://doi.org/10.1007/s10661-014-4113-y

    Article  CAS  Google Scholar 

  • Kinuthia, G. K., Ngure, V., Beti, D., Lugalia, R., Wangila, A., & Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Scientific Reports, 10, 8434. https://doi.org/10.1038/s41598-020-65359-5

    Article  CAS  Google Scholar 

  • Kolawole, T. O., Ajibade, O. M., Olajide-Kayode, J. O., & Fomba, K. W. (2022a). Level, distribution, ecological, and human health risk assessment of heavy metals in soils and stream sediments around a used-automobile spare part market in Nigeria. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-022-01283-z

    Article  Google Scholar 

  • Kolawole, T. O., Laniyan, T. A., Bello, E. O., & Isibor, R. A. (2022b). Assessment of some potentially harmful elements and their associated health risk in stream sediments of rural gold-mining communities in Southwestern Nigeria. Arabian Journal of Geosciences, 15, 941. https://doi.org/10.1007/s12517-022-10164-9

    Article  CAS  Google Scholar 

  • Kolawole, T. O., Olatunji, A. S., Jimoh, M. T., & Fajemila, O. T. (2018). Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in southwestern Nigeria. Journal of Health and Pollution, 8(19), 180906.

    Google Scholar 

  • Krishan, G., Rao, R. S. M., Gupta, S., & Tiwari, P. K. (2015). Fluoride, iron and nitrate affected areas of Punjab. Suresh Gyan Vihar University Journal of Climate Change and Water, 1(1), 1–5.

    Google Scholar 

  • Madrid, L., Dıaz-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49(10), 1301e1308.

    Google Scholar 

  • Mehmood, K., Ahmad, H. R., Abbas, R., & Murtaza, G. (2019). Heavy metals in urban and peri-urban soils of a heavily-populated and industrialized city: Assessment of ecological risks and human health repercussions. Human and Ecological Risk Assessment an International Journal. https://doi.org/10.1080/10807039.2019.1601004

    Article  Google Scholar 

  • Moeckel, C., Breivik, K., Nøst, T. H., Sankoh, A., Jones, K. C., & Sweetman, A. (2020). Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies. Environment International, 137, 105563.

    CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Namuhani, N., & Kimumwe, C. (2015). Soil Contamination with heavy metals around Jinja steel rolling mills in Jinja Municipality, Uganda. Journal of Health and Pollution, 5, 61–67.

    Google Scholar 

  • Nematollahi, M. J., Keshavarzi, B., Zaremoaiedi, F., Rajabzadeh, M. A., & Moore, F. (2020). Ecological-health risk assessment and bioavailability of potentially toxic elements (PTEs) in soil and plant around a copper smelter. Environmental Monitoring and Assessment, 192, 639.

    CAS  Google Scholar 

  • Nezat, C. A., Hatch, S. A., & Uecker, T. (2017). Heavy metal content in urban residential and park soils: A case study in Spokane Washington, USA. Applied Geochemistry. https://doi.org/10.1016/j.apgeochem.2016.12.018

    Article  Google Scholar 

  • Nica, D. V., Bura, M., Gergen, I., Harmanescu, M., & Bordean, D. M. (2012). Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chemistry Central Journal, 6, 55. https://doi.org/10.1186/1752-153X-6-55

    Article  CAS  Google Scholar 

  • Odewande, A. A. & Abimbola, A. F., (2008). Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. Environmental Geochemistry and Health, 30(3), 243–54.

  • Odediran, E. T., Adeniran, J. A., Yusuf, R. O., Abdulraheem, K. A., Adesina, O. A., Sonibare, J. A., & Du, M. (2021). Contamination levels, health risks and source apportionment of potentially toxic elements in road dusts of a densely populated African City. Environmental Nanotechnology, Monitoring & Management, 15, 100445.

    CAS  Google Scholar 

  • Ogundele, L. T., Ayeku, P. O., Adebayo, A. S., Olufemi, A. P., & Adejoro, I. A. (2020). Pollution indices and potential ecological risks of heavy metals in the soil a case study of municipal wastes site in Ondo state Southwestern, Nigeria. Polytechnica. https://doi.org/10.1007/s41050-020-00022-6

    Article  Google Scholar 

  • Okunola, O. W., & Olatunji, A. S. (2017). Geochemical assessment and speciation of metals in sediments of Osun and Erinle Rivers, Southwestern Nigeria. Arabian Journal of Geosciences, 10, 366. https://doi.org/10.1007/s12517-017-3110-1

    Article  CAS  Google Scholar 

  • Olatunji, A. S., & Afolabi, O. O. (2020). Assessment of Pb contamination of soils, sediments and road dusts of the city of Lagos, Nigeria. Environmental Geochemistry and Health, 42, 1095–1107.

    CAS  Google Scholar 

  • Olatunji, A. S., Kolawole, T. O., Oloruntola, M., & Günter, G. (2018). Evaluation of Pollution of soils and particulate matter around metal recycling factories in Southwestern Nigeria. Journal of Health and Pollution, 8, 20–30. https://doi.org/10.5696/2156-9614-8.17.20

    Article  Google Scholar 

  • Olatunji, O. S., Kolawole, T. O., & Afolabi, O. O. (2016). Trace metals evaluation of stream sediments in sub-urban environment: A case study of Apomu-Ikire, southwestern Nigeria. Journal of Geology and Mining, 52, 73–80.

    Google Scholar 

  • Olajide-Kayode, J. O., Kolawole, T. O., Oyaniran, O. O., Mustapha, S. O., & Olatunji, A. S. (2023). Potentially Harmful Element toxicity in Geophagic clays consumed in parts of southeastern Nigeria. Journal of Trace Elements and Minerals, 4, 100050.

  • Olorundare, O. F., Ipinmoroti, K. O., Popoola, A. V., & Ayenimo, J. G. (2011). Anthropogenic Influence on Selected Heavy Metal Contamination of Urban Soils of Akure City, Nigeria. Soil and Sediment Contamination, 20, 509–524.

    CAS  Google Scholar 

  • Oluwatuyi, O. E., Ajibade, F. O., Ajibade, T. F., Adelodun, B., Olowoselu, A. S., Adewumi, J. R., & Akinbile, C. O. (2020). Total concentration, contamination status and distribution of elements in a Nigerian State dumpsites soil. Environmental and Sustainability Indicators, 5, 100021.

    Google Scholar 

  • Ondrácek, J., Schwarz, J., Zdímal, V., Andelová, L., Vodicka, P., Bízek, V., Tsai, C.-J., Chen, S.-C., & Smolik, J. (2011). Contribution of the road traffic to air pollution in the Prague city (busy speedway and suburban crossroads). Atmospheric Environment, 45(29), 5090–5100.

    Google Scholar 

  • Owoade, K. O., Hopke, P. K., Olise, F. S., Ogundele, L. T., Fawole, O. G., Olaniyi, B. H., Jegede, O. O., Ayoola, M. A., & Bashiru, M. I. (2015). Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5–10) from a scrap iron and steel smelting industry along the Ife-Ibadan highway, Nigeria. Atmospheric Pollution Research, 6(1), 107–119. https://doi.org/10.5094/apr.2015.013

    Article  CAS  Google Scholar 

  • Owoade, O. K., Olise, F. S., Obioh, I. B., Olaniyi, H. B., Ferrero, L., & Bolzacchini, E. (2009). EDXRF elemental assay of airborne particulates: A case study of an iron and steel smelting industry, Lagos, Nigeria. Scientific Research and Essays, 4, 1342–1347.

    Google Scholar 

  • Paatero, P. (1999). The multilinear engine–a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics, 8, 854–888. https://doi.org/10.2307/1390831

    Article  Google Scholar 

  • Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Evironmetrics, 5, 111–126. https://doi.org/10.1002/env.3170050203

    Article  Google Scholar 

  • Pavlović, D., Pavlović, M., Čakmak, D., Kostić, O., Jarić, S., Sakan, S., Djordević, D., Mitrović, M., Gržetić, I., & Pavlović, P. (2018). Fractionation, mobility and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities. Archives of Environmental Contamination and Toxicology, 75, 335–350.

    Google Scholar 

  • Pavlović, D., Pavlović, M., Perović, V., Mataruga, Z., Čakmak, D., Mitrović, M., & Pavlović, P. (2021). Chemical fractionation, environmental, and human health risk assessment of potentially toxic elements in soil of industrialised urban areas in Serbia. International Journal of Environmental Research and Public Health, 18, 9412. https://doi.org/10.3390/ijerph18179412

    Article  CAS  Google Scholar 

  • Pavlović, M., Pavlović, D., Kostić, O., Jarić, S., Čakmak, D., Pavlović, P., & Mitrović, M. (2017). Evaluation of urban contamination with trace elements in city parks in Serbia using pine (Pinus nigra Arnold) needles, bark and urban topsoil. International Journal of Environmental Research, 11, 625–639.

    Google Scholar 

  • Pecina, V., Brtnický, M., Baltazár, T., Juřička, D., Kynický, J., Galiová, M.V. (2020). Human health and ecological risk assessment of trace elements in urban soils of 101 cities in China: A meta-analysis, Chemosphere, https://doi.org/10.1016/j.chemosphere.2020.129215.

  • Pulles, T., van der Gon, H. D., Appelman, W., & Verheul, M. (2012). Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmospheric Environment, 61, 641–651.

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19, 230–241.

    Google Scholar 

  • Radojevic, M., & Bashkin, V. N. (1999). Practical environmental analysis. Royal Society of Chemistry.

    Google Scholar 

  • Rakotondrabe, F., Ngoupayou, J. R. M., Mfonka, Z., Rasolomanana, E. H., Abolo, A. J. N., & Ako, A. A. (2018). Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate Statistical Analysis approach. Science of the Total Environment, 610–61, 831–844.

    Google Scholar 

  • Ralph, O., Gilles, N., Fon, N., Luma, H., & Greg, N. (2018). Impact of artisanal gold mining on human health and the environment in the Batouri Gold District, East Cameroon. Academic Journal of Interdisciplinary Studies, 7, 25–44.

    Google Scholar 

  • Rudnick, R. L. & Gao, S. (2003). Composition of the continental crust. In R. L. Rudnick, (Ed.), Treatise on geochemistry: The crust. pp. 683, Elsevier Ltd., Oxford.

  • Sucharovà, J., Suchara, I., Hola, M., Marikova, S., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2012). Top-/bottom-soil ratios and enrichment factors: What do they really show? Applied Geochemistry, 27, 138–145.

    Google Scholar 

  • Sun, R., Yang, J., Xia, P., Wu, S., Lin, T., & Yi, Y. (2020). Contamination features and ecological risks of heavy metals in the farmland along shoreline of Caohai plateau wetland, China. Chemosphere, 254, 126828.

    CAS  Google Scholar 

  • Taiwo A. M, Michael J. O., Gbadebo A. M., Oladoyinbo F. O. (2019). Pollution and health risk assessment of road dust from Osogbo metropolis, Osun State, Southwestern Nigeria. Human And Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1563478.

  • Thongyuan, S., Khantamoon, T., Aendo, P., Binot, A., & Tulayakul, P. (2020). Ecological and health risk assessment, carcinogenic and noncarcinogenic effects of heavy metals contamination in the soil from municipal solid waste landfill in Central, Thailand. Human and Ecological Risk Assessment an International Journal. https://doi.org/10.1080/10807039.2020.1786666

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). (1989). Risk assessment guidance for superfund, vol I., Human health evaluation manual (Part A) Office of Emergency and Remedial Response, Washington.

  • U.S. Environmental Protection Agency (USEPA) (2001). Risk assessment guidance for superfund: Volume III-part A, process for conducting probabilistic risk assessment; 20460, EPA 540-R-02–002; U.S. Environmental Protection Agency, Office of Emergency and Remedial Response: Washington.

  • USDOE. (2011). The risk assessment information system (RAIS). Cass Avenue Argonne, IL: U.S. Department of Energy’s Oak Ridge Operations Office (ORO).

  • Ustaoğlu, F., & Islam, Md. S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113, 106237.

    Google Scholar 

  • Van Bohemen, H. D., & Van De Laak, W. H. J. (2003). The influence of road infrastructure and traffic on soil, water, and air quality. Environmental Management, 31(1), 0050–0068.

    Google Scholar 

  • Varrica, D., Bardelli, F., Dongarra, G., Tamburro, E. (2012). Speciation of Sb in airborne particulate matter, vehicle brake linings and brake pad wear residues. Atmospheric Environment, 64, 18–24.

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    CAS  Google Scholar 

  • Watts, N. L. (1980). Quaternary pedogenic calcretes from the Kalahari (southern Africa): Mineralogy, genesis and diagenesis. Sedimentology, 27(6), 661–686.

    Google Scholar 

  • Yan, X., Liu, M., Zhong, J., Guo, J., & Wu, W. (2018). How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe river delta North China. Sustainability, 10, 338. https://doi.org/10.3390/su10020338

    Article  CAS  Google Scholar 

  • Yang, P., Drohan, P. J., Yang, M., & Li, H. (2020). Spatial variability of heavy metal ecological risk in urban soils from Linfen China. CATENA, 190, 104554.

    CAS  Google Scholar 

  • Yaylalı-Abanuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99, 82–92.

    Google Scholar 

  • Yıldırım, G., & Tokalıoglu, S. (2016). Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis. Ecotoxicology and Environmental Safety, 124, 369–376.

    Google Scholar 

  • Zhang, C., Qiao, Q., Piper, J. D. A., & Huang, B. (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 159, 3057–3070.

    CAS  Google Scholar 

Download references

Funding

We declare that there is no external fund received for this research.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Tesleem O. Kolawole, the first and corresponding author designed the study, took part in the fieldwork, data analysis, data interpretation, and wrote the manuscript, while Dr. Charles A. Oyelami, the second author, also designed this work, the fieldwork, and the manuscript review. Dr. Jerry O. Olajide-Kayode, the third author took part in the fieldwork and wrote some part of the manuscript . Dr. M. T. Jimoh took part in data analysis, fieldwork, and manuscript review. Dr. K.Wadinga Fomba assisted in designing the research, some data interpretation, and reviewed the manuscript, Dr. Adebanjo J Anifowoshe and Prof. Sunday B. Akinde assisted in analyzing samples and also reviewed the manuscript in the performance and validations of human health risk assessment results.

Corresponding author

Correspondence to Tesleem O. Kolawole.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

We declare no competing interest.

Ethical approval

Not applicable.

Consent to participate

All the co-authors approved their participation.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolawole, T.O., Oyelami, C.A., Olajide-Kayode, J.O. et al. Contamination and risk surveillance of potentially toxic elements in different land-use urban soils of Osogbo, Southwestern Nigeria. Environ Geochem Health 45, 4603–4629 (2023). https://doi.org/10.1007/s10653-023-01518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01518-7

Keywords